

When Good Code Goes Bad - Workshop on Debugging December 2006

First Hack

Transcript

We're going to start now by looking at the first hack at debugging. Now, I'm going to take the code

as you saw it and start putting in print statements. Print statements are very convenient if you're

dealing with programs that are going to be spread across several processors. The more processors

you have, the more things you have to track. And if you're trying to track those things in real time, it

becomes unmanageable. So certainly hand-coded debugging is convenient for this types of

programs.

Another thing that I find is that by hand-coding debugging statements, you're actually forced to look

at the code. And by looking at the code, you get a much clearer picture of what it's doing and what's

gone wrong.

The drawbacks to using hand-coded debugging is that you have really no control over the execution

of the code. You start it, you run it, and then look at what happened. With the tools like gdb and

TotalView, you have some control over the execution of the code, the manipulation of the data, and

so on.

So when you use hand-coded debugging, you have to pay close attention to what you're doing. You

have to assume that everything has gone wrong and then isolate from that assumption.

Every time you find an answer to a problem, or every time you find a location at which to question

your code, you have to add new code--add new print statements--then recompile and re-run. This

can be very time consuming.

And the worst thing that can happen, is that you can use your debugging statements and introduce a

new error. So now you have to debug your debugging. It's best to keep these things as simple as

possible and as clean as possible.

We're going to start by taking a look at debugging this code. Now, we start off by running the code,

just to see what happened. We're going to use a bsub script. This is the script right here. There's

nothing particularly interesting in it, except I'm using a dash T option. When you use a dash T option

on the p-run, it will print out the rank of the processor. So when you print something to screen, the

rank of the processor is printed first.

So once we've gotten that going we can do an LS. So we can see the output files and the error files

have been produced, and we can go ahead and start taking a look at them.

This is certainly a bad sign. "MPI receive, message truncated." Well, something's clearly wrong

with the MPI in this code.

Page 2

Take a look at the output file, and really no further information here.

We know something's wrong with MPI. We don't necessarily know which MPI statement it's

complaining about. So what we're going to want to do is start isolating the MPI sends and receives.

And we're going to start off with actually the worst possible approach. We're only going to focus on

one receive, and we'll see why it's not necessarily a useful thing to do. But the first thing we want to

do is find out where in our code we have sends and receives, and that what we should do is actually

print something before and after each of these sends and each of the receives. We should get some

indication of what's going on, but it's worth looking at the code.

We're going to look through MatMul, and what we want to do, put in this line, "print receive one",

indicating that we've reached this statement. These macros, "file" and "line", if you use the capital F

extension on your fortran file, and you're using the MPI F90 code, will actually go through and

replace "file" with the file name and "line" with the line number that it found these commands.

We put this into our code. We go back through the process of resubmitting. This is going to print to

standard output, so it's not going to show up in the error file. But it will show up in the output file.

And when it shows up in the output file, what we see is, "one MPI received MatMul dash par dot F";

that's the name of this file. It's a capital F again. You have to use the capital F if you're going to the

"file" and "line" macros.

By printing out this statement, what do we accomplish? Well, frankly, we really don't accomplish

much of anything. But this is also sort of typical for initial hacks at debugging code.

Going back and looking at the code, you should notice that there's something a little bit askew, and

that should provoke you into thinking about what could have caused you to go wrong. By looking at

that you would see that the two sends don't match up with the one receive. One thing that we should

have noticed is that there were three sends and there were two receives. It's not always the case that

that's a problem. The receives could be in a loop. So now I'm going to stick in the additional receive

and see what happens.

We're recompiling, resubmitting, and going back and checking the errors and, well, we don't have a

MPI receive error, but what we have is "severe end of file read, unit nine." Even more telling, we've

reached one receive, but not the second receive.

When we run b-hist, what we see is that this job is still running. So something has gone wrong with

the code. One processor has died, another processor is continuing on. So I'm going to kill this

executing code.

We've got something wrong with the read, and what we want to do now is start figuring out, based on

where the read statement is, what could have gone wrong. And what we'll do is go through the code.

Here's the read. We're going to add in the fact that we're reading from the file. We add in a little bit

of state information, NMAX. It's the size of the matrix basically. It's a square matrix, so it's the

number of rows and the number of columns.

We're going to stick in some information about the DO-loops. Well, anytime you have something go

Page 3

wrong, the first thing you should check are your loops, and try to make sure that they've stopped.

And we're going to scroll through a little bit more, and add some information about sending and

receiving. We've got to know whether or not the sends have been made successfully.

With this information, we'll get a little more clarity about what's going on with the code itself. So we

go ahead and submit. This time it's completed, but with a segmentation violation. It's a good thing to

have SEG-Vs, because you can be pretty confident that something's gone wrong with an array.

Now we go and look at some of the output we've produced. By looking at this NMAX value of ten

thousand, and then looking at the actual size of the array. The maximum size of the array we're

allocating is five thousand. We have a problem. We've read a ten thousand by ten thousand matrix

into a five thousand by five thousand matrix.

We go ahead and take a look at our matrix, and sure enough, this is why we SEG-V'd. We could

have avoided this. By simply taking the precaution that when we do a read, especially when we're

doing a read of something very large, make sure that we're reading is viable for the program that we

have at hand. Debugging really isn't just about code; in this case, debugging is about an input file.

Now what we want to do is link in the appropriate matrix, so this is a ten by ten matrix. When you're

debugging code, start with a problem that's bite-sized, something you can actually get around and get

ahold of. And a ten-thousand by ten-thousand matrix is not where you want to start.

What we're going to do before we actually get to fixing the problem is look at pre-emptive measures.

In this case, what we want to do is say, "If the value of our matrix is larger than what we've actually

allocated," the very minimum that we should do is say, "We've read in something to big; stop now."

It'd be better to say, "Matrix read exceeds allocated size." Some indication as to why we're actually

terminating, but at least stop the code from running.

We go ahead through the process of making, submitting, and checking the file. We see that it's

already run for seventy-one seconds by the time we do this check. Go ahead and kill it. Why is it

running? Well, I've already started MPI, and I'm aborting the code. So I'm killing this process, and

ignoring the other processes.

The code we included was to call "Abort". What we should have done, is we should have used MPI

Abort. This will halt the MPI program. When we execute it, we see the code stopped. We go ahead

and check. What we see is that the rank zero processor called MPI Abort. If we had more

information, we could actually tell why it called it, where it called it, and give us a hint as to where to

start debugging.

Here I'm just adding some additional statements to clarify what the code's doing, what the values are

of functions that are being called, and so on. And now we're going to go ahead and execute this

code. We go through the same process. Now we've got some information to work with.

We see the code has run, but it hasn't terminated. So now that we've fixed the problem with the one

wrong MPI receive, and we've fixed a problem with an inappropriate sized array, we've uncovered a

Page 4

new problem. Now what we want to do is start tracking down what went wrong.

But before we go down that route, there are a few things that we want to take a look at. We start

seeing data interleaved. We see some stuff from rank zero, some stuff from rank one. If we had

eight processors, or sixteen processors, this would become unreadable. So what we want to do is

take a look at a way of separating out the output from each processor. And what we're going to do,

we're going to start replacing our print statements. Rather than printing to "star", we're going to print

to something called the "error unit". Now, "error unit" is actually an integer variable that I've

defined--the number one hundred plus the rank of the process.

Now, a problem with doing this, is that if you're already printing to one hundred plus the rank of the

process, you're going to be conflicting with the output file that you want. So you can't just simply

take the number one hundred. You have to look through your code to figure out what units you're

using and then make sure you're using something else.

What we're going to do is have all of our print statements re-routed to writes, and that will put all our

output into files called "fort dot error-unit number". So we'll have "fort dot one hundred" and "fort

dot one hundred one". I also added into my output, I added in a print of the mat size, and printed out

the entire matrix.

When we go through the process of running the code again... That's a huge matrix. That may also

account for some of the other problems.

Now, one of the things we should notice is that "matsize", which should be the size of the matrix that

we're actually passing around--the five thousand by five thousand matrix--was defined as the size of

the matrix we actually read in, and was declared inside of rank zero. So, in other words, I declard

matsize correctly, but it's not available to process one. It's set inside of process zero. This kind of

mistake isn't uncommon, and it really could have been avoided. Here it's hard to tell how to avoid

this problem, but when we talk about the next step in this process, you'll see how this problem would

be unlikely to arise.

One of the things that happened was that I'd found the problem with the matrix size, and then I

started going through and realized that there were a lot of problems with the way things had gotten

defined. And the reason there were a lot of problems was that I allowed everything to be implicit,

except for a few explicitly defined arrays. This is not a minor problem.

If you take the responsibility for making sure your code is correct away from the compiler and put it

on your own shoulders, you're going to avoid a lot of unpleasant errors and useless wastes of time.

So before we can even really get started on addressing those details, one of the things we want to do

is add in "implicit none".

When we do this, we are forced to make loads of new declarations. This took about five or ten

minutes to go through to get all the declarations put in properly. If I had done this in the first place, it

would have eliminated probably two or three hours of useless debugging. So, in any case, we're

going to go through the same process of compiling, submitting, checking the history. We're now

getting an appropriate matsize.

Page 5

What I had to do with this matrix size was move it outside of this rank zero IF statement and put it

where it should have been in the first place. Declare it where it's appropriate, not where it seems to

be convenient. When we see what a more appropriate decomposition of this code would look like,

problems like these melt away.

What we want to do now is go and check our read of matrix A. We're going to add some code to just

simply write out A. Now, this time it's a ten by ten array. We should be pretty certain that it should

be a manageable size to look at. So we're going to print out the matrix A. So we go through the

process of compiling, submitting, verifying our submit. And there's matrix A from rank zero, and

here's matrix A from rank one. Well, that's kind of confirming that something's wrong with matrix

A.

One of the things that's gone wrong here ends up being the receive. There's the receive for matrix A.

We should consider, how do we know what matrix A actually is? Well, what we should be getting is

defined by these start and finish arrays. They're the arrays that show the start point of the matrix

allocated to each process. The appropriate information here is what was actually passed to each

processor, and is that processor reading the correct thing?

Here's where we're receiving matrix A. Now let's just check and make sure that the start and finish

values by this point are legitimate. We go through the same procedure, and well, those aren't very

good values for ranks. That should be six and ten.

Why would these values be so huge? There were a pair of sends, NMAX and A, so we have a pair of

receives, NMAX and A. This is the chunk of code we added. We added it kind of spuriously. If we

had bothered to look at the code carefully, all this stuff here, which requires knowing NMAX ahead

of time, has garbage values in it. This is actually a direct consequence of not having well-structured

code.

Having well-structured code isn't going to prevent this from happening to you. When you structure

the code properly, it will give you some idea as to where to place solutions to problems. What I

should have done, is I should have put this receive above all this stuff here. So we'll go ahead and

make the code, resubmit the code. So we go ahead and finish running the code.

We're looking at rank one, and now we have reasonable start and finish values. Matrix A is still

zero. So something's still wrong with the code, but at least we know we're passing an appropriate

value. They're both still running so we go about killing the remaining processes.

We have a ten by ten matrix. The first five rows of that matrix are zero, and what we're looking at is

the first five elements, which should all be zero. I got the right output.

So, we want to investigate why we aren't terminating. We've gone through the sequence where we're

pretty sure now that we're sending and receiving the matrices that we need to send and receive.

We're doing the computations probably correctly. But what we have right now is problem that we're

hanging. And so why would we hang? Well, we'd hang because of an infinite loop.

When we look through the code, we see that there's really not much of a point that we could have an

Page 6

infinite loop. So, it's worth taking a look the sends and receive values for the final matrix. This is

the value that's being sent from process one back to zero. And the corresponding receive is right

here. When we run this code, we get the send being printed but we never see it terminate.

The difference between these two lines is, the message tag and the destination, and we see that that's

fine, but the message tag is definitely not. It's also not an uncommon error. So we can fix this error

pretty quickly. Replace the tag; set it to two rather than to one. Then we run through it. And it

comes back without any error statements, which means it ran correctly. So the code is okay.

