

When Good Code Goes Bad - Workshop on Debugging December 2006

General Problem

Transcript

So we want to talk about what it is that we mean by a bug. And then we want to talk about two

options for dealing with bugs. One option is to remove the bug, and the other is to restructure the

code to make it easier to deal with both with the debugging aspects of the code and subsequent

development aspects of the code.

The easiest kind of bug is one that simply produces an incorrect result consistently. One of the more

insidious types of bugs is one that produces a different result each time you run it, or may produce

correct results some of the times.

Basically anything in the code that you find irritating will be a bug. Debugging should allow you to

remove that irritant. It's a process of identifying what's causing the irritation, figuring out the source

of that problem, and then fixing it.

So, when we go about debugging, what we want to do is collect enough information on the problem

itself. But the problem is, we don't want to collect too much. If you have a thousand by thousand

matrix, you don't necessarily want to print that out every time you do something to it. So there's a

question about being judicious in how you select state information--information about the code.

One thing that isn't usually considered part of debugging and is certainly not the usual process, I

think, for most people, but before you actually change code and commit that change, you really have

to thoroughly test that you haven't messed something else up in response. So a big part of debugging

is to not introduce new bugs. To do that, you test the code before you actually accept it as a valid

change.

It's worthwhile adopting some sort of version control system. When you are developing code, you

want to track the changes you made, and commit them individually, so you can recover incorrect

changes.

Not all code is really amenable to a quick fix. In fact, a lot of code isn't really amenable to a quick

fix. Quick fixes tend to be quick today and very, very long tomorrow. So it's best to really consider

whether simply removing the problem is the appropriate action, or whether you really want to

consider redesigning the code as a whole.

You shouldn't fix code by adding conditions to the code. In other words, upgrading code by saying

"Under condition X, I want to take one path; under condition Y, I want to take a different path." If

you start including all those conditions in a single file, you really have to consider redesigning your

code and thinking a little more carefully about it.

Page 2

I think one of the experiences that we've had--that the consultants have had--is that spending a little

bit of time thinking about the code means spending a lot less time debugging and maintaining and

worrying about the correctness of your code.

So, you should also, as you go about the process of debugging, consider keeping your code testable.

In other words, if you start producing large files that become more and more complex to understand

to follow, being able to test whether or not that routine makes sense becomes a much more difficult

process. If you have seven or eight different options to take, you have to ensure each one of those

seven or eight options are still correct once you've completed the debugging process.

In terms of strategies, we start off by really wanting to question the code. The code has done

something you didn't want it to do, so how do you figure out what it is that made the code do that?

You start off by isolating where the code went wrong, so you can use a divide and conquer approach

where you go through the code to isolate the specific statement that failed. It's not necessarily the

statement that's wrong; it's the statement that failed.

Once you figure that out, you start collecting information about that point. What were the values

involved in the failure? When you isolate the point at which the code failed, and you isolate the

condition of the code at the failure, then you have to start working backward, and tracking down how

values got set to something inappropriate. And this is where things can become very dicey and very

problematic, because if your code is not well structured, working backward to find the source of a

problem, you may fix this problem, but you may introduce a new problem as a result. So, even

though code structure isn't necessarily a part of this talk, it's necessarily a part of effective debugging

and effective program design.

We'll start off with looking at hand-coded debugging statements, so we're going to use "print". We'll

also look at command-line debuggers. We're also going to look at GUI-based debugging. It's not

necessarily the case that any one of these is a silver bullet. I will use any and all three of these when

I debug code. It just depends on the situation.

