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The William R. Wiley Environmental Molecular
Sciences Laboratory, a U.S. Department of
Energy national scientific user facility located at
Pacific Northwest National Laboratory in Richland,
Washington provides integrated experimental and
computational resources for discovery and
technological innovation in the environmental
molecular sciences to support the needs of DOE
and the nation.

Science Themes

Instruments are available to users, generally
at no cost to the user, for research in four
science theme areas:
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Pacific Northwest National Laboratory

Operated by Battelle for the U5, Department of Energy

Atmospheric aerosol chemistry
Biological interactions and dynamics
Geochemistry/biogeochemistry and subsurface

Science of interfacial phenomena.

nvironmental Molecular Sciences Laboratory:
A National Scientific User Facility

Capabilities

EMSL houses several state-of-the art
mass spectrometry, nuclear magnetic
resonance, computational, and laser,
optical and imaging capabilities under one
roof. Instruments include:

P A 12-tesla mass spectrometer, one of a
handful in existence.

» One of the world’s largest (900 MHZz)
wide bore NMR spectrometers.

» Supercomputing resources and
associated premier computational
chemistry software.

For more information, see:

Bﬂ"@l Ie WWW.EMSL.PNL.G



Proteomics:
The Good, the Bad, and the Ugly

Studies the real functional molecules of the cell & enables
Important advances in our understanding of biological
systems

Limited depth
— sample complexity and/or heterogeneity

— limit of detection (the lowest number of molecules that can be
detected)

— dynamic range (ability to detect a low abundant species in
the presence of other more-abundant species)

— analysis throughput

Misidentifications

Protein isoforms, post-translational modifications (PTMs)
and covariation between PTMs on single protein



Accurate Mass and Time Tag Approach
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Dynamic range: 10°
Detection limit: 100 zeptomoles
MMA 1-5 ppm
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What Limits Proteome Measurement Coverage”?

Sample size & complexity |

MS dynamic range
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Proteome Complexity &
Mass Measurement Accuracy



~ #  The human organism:

THE = i
HUMAN 7 S8
GENOME . ¥

e ~ 3 billion nucleotides

"~ +~30,000 genes coding for
~ 100,000-300,000 transcripts

e ~1-2 million proteins

e ~ 60 trillion cells of

e ~ 300 cell types In

e ~14,000 distinguishable

morphological structures




~1.7 million tryptic peptides
(allowing 1 missed cleavage) from human
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AMT tags for spatial mapping of protein
abundances in the mouse brain

,, Y protein abundance MRNA abundance
. | distribution obtained distribution obtained
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Bacterial Community

Capable of radical impacts on human health and the health of
our en\lirnnmonf (eninhhitinn Aieaaecena AArrAncinn Hq’gradatlon’
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~2.8 million tryptic peptides
(allowing 1 missed cleavage) from 25 microbes
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MMA & NET Reqguirements

5 ppm and 1 ppm and
0.01 NET 0.01 NET
Number of  Total in Silico Percent Percent
Organism Amino Acids peptides Unique Unique
D desulfuricans 1,008,695 144,870 23% 48%
D Radiodurans 963,879 132,105 23% 47%
E Coli 1,358,990 183,168 18% 37%
G sulfurreducens 1,139,133 174,184 22% 46%
M genitalium 174,919 30,593 20% 41%
M jannaschii 505,037 95,610 19% 41%
N meningitidis 593,191 87,226 21% 45%
P gingivalis 646,417 100,845 22% 46%
R palustris 1,586,736 227,623 22% 47%
B burgdorferi 432,403 73,276 21% 41%
C burnetii 569,561 89,802 22% 46%
C muridarumi 324,399 48,907 21% 45%
C pneumoniae 365,118 54,314 22% 46%
C tepidum 629,322 98,661 21% 46%
S agalactiae 618,957 94,699 21% 42%
S aureus 772,978 115,414 22% 45%
S mitis nctc 584,835 78,896 13% 27%
S oneidensis 1,422,029 182,728 23% 48%
S pneumoniae 597,559 87,297 14% 29%
S typhimurium 1,423,622 193,846 18% 38%
T denticola 864,153 144,704 21% 45%
T maritima 581,312 102,984 20% 43%
T pallidum 350,744 56,462 21% 45%
W pipientis 335,882 56,523 21% 43%
Y pestis 1,320,997 170,589 22% 46%
Total: 2,825,326

Total and Unique Peptides
(at £5 ppm and +£0.01 NET)
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As the number of organisms
grow, the fewer the number
of differentiating peptides!



Community profiling: current status

Syntig plots show the
natural Variation Of genetiC ﬁ tauA, nitrogen and sulphur
profiles, and proteomic - S

. . data are overlaid to show
Pelagiobacter ubique accounts

for ~25% of the bacteria in the expression.
oceans and may play a large role 2
in carbon sequestration.

Proteomic data collected over time will be mapped

and correlated to known biological cycling. Stephen Giovannoni
g yeling Douglas Barofsky Oregon State Usu

Sarah Sowell “"'”“'”

Larry Wilhelm Department of Microbiology

High field FTICR for improved specificity &

selectivity (I.e. more unique peptide identifiers)



Dynamic range &
Limit of detection



Proteomics Iceberg Paradigm:

Low # of highly
abundant proteins,
but high protein
amount

High # of low
abundant proteins,
but low protein
amount
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Human Plasma

>101° Dynamic Range of Protein Express
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Probing the metaproteome of a bacterial community is limited
by dynamic range and sensitivity of mass measurements

Organism Markers (Peptides)

Dynamic Range —e— All D. radiorurans peptides
Objective —a—All' S. oneidensis peptides

Current
1500 | Dynamic Range

Current LOD

Number of Peptides

N
N. Q .
S

D. radiodurans and S. oneidensis mixing ratio

AD Norbeck at al., J. Microbiol Meth. 67(3):473-86 (2006).

LOD Objective: Single cell detection

Dynamic Range Objective: 100-fold



Protein Isoforms & PTMSs:
Top-Down Proteomics



Looking at intact proteins: the rationale

________________________________

4 _______________
________________________________________ I Posttranslational
. Gene polymorphisms I modifications
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. Transcriptional slippage Internal initiation

. Nested genes

38,016 protein products possible from a single gene in Drosophila

~ 2.5 splice variants; 3 PTMs; 8 distinctive states = 680, 000 protein
form possible from ~25,000 genes in Human



Structural characterization of casein isoforms
using integrated approach
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B-casein isoforms from top-down
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Putting Humpty Together Again
B3-casein isoforms: top-down vs. bottom-up

Y
/AS
Isoform1

u
Isoform2

L/L
Isoform3

F =
. Isoform1 ——A
Candidatel H B
Isoform3
tryptic peptides
M
oooooooo
'R Candidate?2 " A
I — | lsoform —__—h
' < Isof 3
A A — p -
‘ oooooooo 4 -
Candidate3 | Q Sy
y
oooooooo Q 2’




2008 Nature Publishing Group http://www.nature.com/naturemethods

Intact Proteins

~
| SPECIAL FEATURE (1

» Top-down mass
spectrometry

Top-down mass spectrometry

offers the ability to sequence

intact proteins—post-translational
modifications and all—but is not yet
a high-throughput method.

As the well-established ‘bottom-up’ mass
spectrometry-based approach continues its
success in high-throughput proteomics, an
emerging approach known as‘top-down’ is
beginning to make headlines, especially for
the analysis of post-translational modifica-
tions (PTMs).

PTM:s often occur in ditferent combina-
tions on individual proteins, and under-
standing these combinations is crucial for
understanding biological regulation, such
as for ‘cracking’ the histone code. In a bot-
tom-up experiment, the proteomic mix-
ture is digested into short peptides before
analysis, so information about the cor-
related relationships of different PTMs is
lost. Compounding the problem is the fact
that many PTMs are unstable under typical
mass spectrometry conditions, and that the
mass spectrometer does not detect every
last peptide, so minor PTMs occurring on

a small percentage of
proteins are often not
observed.

In the top-down
approach, intact pro-
teins are introduced
into the mass spec-
trometer, so impor-
tant information
about combinatorial
PTMs is retained. In
recent years, highly
efficient fragmenta-
tion methods have
been developed
(such as electron
capture dissociation
and electron transfer

4
:
a3
3

Deciphering the histone code could be aided tremendously by high-
throughput top-down mass spectrometry.

dissociation) that are
particularly good at
preserving labile PTMs. The mass range of
top-down has been extended to proteins
as large as 229 kDa (Science 314, 109-112;
2006), and increasingly larger numbers of
intact proteins can be detected in a single
analysis. Yet top-down is still mainly a
technique for analyzing single purified
proteins.

Currently, larger sample quantities are
required and the analysis time is longer
than for a bottom-up experiment, preclud-

ing high-throughput analyses. New meth-
ods are needed for efficient protein sepa-
ration, and robust computational tools for
assigning protein identities and PTMs from
top-down data are also lacking.

So stay on the lookout tor new methods

driving the limits of top-down mass spec-

trometry. Perhaps one day this approach

will be the method of choice for investigat-

ing the biological importance of combina-

torial PTMs. Allison Doerr




Analysis of Intact Proteins of the Yeast Large Ribosomal
Subunit using RPLC-FTICR MS operating at 7T
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The Science Case for High Field FTICR Proteomics

Number of lons
Dynamic Range
Upper Mass Limit
lon Energy

lon Trapping Period

Mass resolving power
Scan Speed (LC-MS)
Highest Non-Coalesced Mass

145 T
94 T

7T

0 21
B (tesla)

“Experiments that can be performed only with heroic

effort at low field become routine at high field!”
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High-Field FT-ICR MS will enable
intact protein AMT Tag Proteomics

Intact mass,

Mixture of proteins
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