Spectroscopy and Diffraction

Molecular level solid-, liquid- and gas-interactions can be investigated through structural, chemical and compositional analysis with remarkable atomic scale spatial and high-energy resolution spectrometers and diffractometers for novel fundamental research.

Resources and Techniques

  • Electron spectroscopy
  • Electron backscatter diffraction
  • Atom probe tomography
  • Ion/molecular beam spectroscopy
  • 57Fe-Mössbauer spectroscopy
  • Optical spectroscopy
  • X-ray tomography and diffractometers

Additional Information:

Description

Capability Details

  • Electron spectrometers with high spatial and energy resolution in-situ and ex-situ x-ray photoelectron spectroscopy
  • Secondary ion mass spectrometers with single and cluster ion sources, and time-of-flight and magnetic mass analyzers
  • Electron microscopes with energy dispersive X-ray spectroscopy, electron energy loss spectroscopy and electron backscatter diffraction
  • Local Electrode Atom Probe tomography system with 355 nm UV laser and reflectron flight path for high mass resolution
  • Fourier transform infrared spectrometers with vacuum bench and variable temperature capability
  • Confocal-Raman, cryogenic time-resolved fluorescence, circular dichroism, stopped-flow absorbance, laser-induced breakdown and sum frequency generation optical tools
  • Variable temperature Mössbauer spectroscopy systems for bulk (transmission mode) and surface (emission) measures
  • X-ray diffraction instruments with sealed tube or rotating anode for analysis of powder, thin film and single crystal samples; point, CCD and image plate detection. X-ray computed tomography with 225- and 320-kV fixed, and 225-kV rotating target options using a 2000x2000 pixel area detector and state-of-the-art processing and visualization software

Electron spectroscopy – Achieving nanoscale spatial resolution, users can study elemental composition, structural properties, and chemical states of materials with applications to thin films, nanomaterials, catalysis, biological and environmental sciences, corrosion, and atmospheric aerosols.

Electron backscatter diffraction – Samples of microstructures in environmental and material science can be examined with three dimensional reconstruction and characterization using focused ion beam-electron backscatter diffraction analysis.

Atom probe tomography – Atom Probe Tomography (APT) provides comprehensive and accurate three dimensional chemical imaging for characterization of both metallic materials and low electrical conductivity materials, such as semiconductors, oxides, carbides, nitrides and composites.

Ion/molecular beam spectroscopy – Secondary ions and scattered ions from various materials are analyzed in straight, magnetic or time-of-flight mass spectrometers to investigate elemental, isotopic and molecular compositions through surface spectra, one dimensional depth profiling and two dimensional and three dimensional chemical imaging.

57Fe-Mössbauer spectroscopy – Using 57Fe (a versatile, highly sensitive, and stable isotope with natural abundance of 2.2%), users can obtain information about the valence state, coordination number and magnetic ordering temperatures for a wide range of Fe-containing samples; (e.g., Fe-organic matter complexes, sediments, catalysts, glass materials).

Optical spectroscopy – Fluorimetry, stopped-flow absorbance, FTIR and confocal-Raman tools enable analysis for biology, radiochemistry, and catalysis. Sum frequency generation-vibrational spectroscopy and second harmonic generation are available to study liquid, liquid and solid, and liquid interfaces.

X-ray tomography and diffractometers – X-ray computed tomography delivers images of microstructures (components, pore structure and connectivity) in biological and geological samples at tens of microns spatial resolution. General purpose and specialized x-ray diffraction systems, including single-crystal, microbeam and variable temperature powder capabilities, empower phase analysis of polycrystalline, epitaxial thin films, protein structure determination, and studies of problematic small inorganic molecules.

Instruments

The atmospheric pressure reactor system is designed for testing the efficiency of various catalysts for the treatment of gas-phase pollutants. EMSL...
Custodian(s): Russell Tonkyn
The LEAP® 4000 XHR local electrode atom probe tomography instrument enabled the first-ever comprehensive and accurate 3-D chemical imaging studies...
Custodian(s): Arun Devaraj, Daniel Perea
The Bio-Logic® SFM-400/S is a 4-syringe stopped-flow system that offers the capability to carry out complex, multi-mixing experiments with the...
Custodian(s): Zheming Wang
EMSL's non-thermal interfacial reactions instrumentation is available for use in research directed toward understanding non-thermal interfacial...
Custodian(s): Greg Kimmel
EMSL's ultrahigh vacuum (UHV) surface chemistry-high-resolution electron energy loss spectroscopy (HREELS) system is designed to study the molecular...
Custodian(s): Mike Henderson

Publications

The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse...
The scalable synthesis of subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic,...
The oxygen reduction/evolution reaction (ORR/OER) mechanisms in nonaqueous Li-O2 batteries have been investigated by using electron paramagnetic...
The syntheses of the new 1,5-diphenyl-3,7-di(isopropyl)-1,5-diaza-3,7-diphosphacyclooctane ligand, PiPr2NPh2, is reported. The two equivalents of the...
Protein markers for identification of Y. pestis and their variation related to culture

Science Highlights

Posted: November 21, 2014
The Science Carbon dioxide (CO2) sequestration in deep subsurface environments has received significant attention and investment as a way to reduce...
Posted: October 17, 2014
A multi-institutional team of researchers studied how and when cloud ice crystals form. Dust is usually a primary catalyst encouraging ice formation...
Posted: September 12, 2014
Green fluorescent proteins, or GFPs, are found in jellyfish and other marine animals and glow green when exposed to light. Scientists use GFPs use...
Posted: June 17, 2014
The Science Hexavalent chromium is a major environmental contaminant at several Department of Energy (DOE) sites as well as other sites around the...
Posted: April 08, 2014
The Science Uranium poses a serious risk of groundwater contamination at the Hanford Site. But most previous experimental studies addressing this...

Molecular level solid-, liquid- and gas-interactions can be investigated through structural, chemical and compositional analysis with remarkable atomic scale spatial and high-energy resolution spectrometers and diffractometers for novel fundamental research.

Resources and Techniques

  • Electron spectroscopy
  • Electron backscatter diffraction
  • Atom probe tomography
  • Ion/molecular beam spectroscopy
  • 57Fe-Mössbauer spectroscopy
  • Optical spectroscopy
  • X-ray tomography and diffractometers

Additional Information:

Investigating the Synthesis of Ligated Metal Clusters in Solution Using a Flow Reactor and Electrospray Ionization Mass

Abstract: 

The scalable synthesis of subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth and post-reduction etching are still not well understood. Herein, we demonstrate a temperature-controlled flow reactor for studying cluster formation in solution at well-defined conditions. Employing this technique methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with an adjustable length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates and products synthesized in real time was characterized using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged metal-ligand complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged metal-ligand complexes while hindering the growth of triply charged clusters. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of reduction synthesis in solution.

Citation: 
Olivares AM, J Laskin, and GE Johnson.2014."Investigating the Synthesis of Ligated Metal Clusters in Solution Using a Flow Reactor and Electrospray Ionization Mass Spectrometry."Journal of Physical Chemistry A 118(37):8464-8470. doi:10.1021/jp501809r
Authors: 
AM Olivares
J Laskin
GE Johnson
Facility: 
Volume: 
118
Issue: 
37
Pages: 
8464-8470
Publication year: 
2014

Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions.

Abstract: 

The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

Citation: 
Johnson GE, TA Priest, and J Laskin.2014."Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions."Chemical Science 5:3275-3286. doi:10.1039/c4sc00849a
Authors: 
GE Johnson
TA Priest
J Laskin
Facility: 
Volume: 
Issue: 
Pages: 
Publication year: 
2014

A Ni(II) Bis(diphosphine)-Hydride Complex Containing Proton Relays - Structural Characterization and Electrocatalytic Studies.

Abstract: 

The syntheses of the new 1,5-diphenyl-3,7-di(isopropyl)-1,5-diaza-3,7-diphosphacyclooctane ligand, PiPr2NPh2, is reported. The two equivalents of the ligand react with [Ni(CH3CN)6](BF4)2 to form the bis-diphosphine Ni(II)-complex [Ni(PiPr2NPh2)2](BF4)2, which acts as a proton reduction electrocatalyst. In addition to [Ni(PiPr2NPh2)2]2+, we report the syntheses and structural characterization of the Ni(0)-complex Ni(PiPr2NPh2)2, and the Ni(II)-hydride complex [HNi(PiPr2NPh2)2]BF4. The [HNi(PiPr2NPh2)2]BF4 complex represents the first Ni(II)-hydride in the [Ni(PR2NR'2)2]2+ family of compounds to be isolated and structurally characterized. In addition to the experimental data, the mechanism of electrocatalysis facilitated by [Ni(PiPr2NPh2)2]2+ is analyzed using linear free energy relationships recently established for the [Ni(PR2NR'2)2]2+ family. We thank Dr. Aaron Appel, Dr. Simone Raugei and Dr. Eric Wiedner for helpful discussions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Mass spectrometry was provided at W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s office of Biological and Environmental Research located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

Citation: 
Das PP, RM Stolley, EF Van Der Eide, and ML Helm.2014."A Ni(II) Bis(diphosphine)-Hydride Complex Containing Proton Relays - Structural Characterization and Electrocatalytic Studies."European Journal of Inorganic Chemistry 27:4611-4618. doi:10.1002/ejic.201402250
Authors: 
PP Das
RM Stolley
EF Van Der Eide
ML Helm
Facility: 
Instruments: 
Volume: 
Issue: 
Pages: 
Publication year: 
2014

The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries.

Abstract: 

The oxygen reduction/evolution reaction (ORR/OER) mechanisms in nonaqueous Li-O2 batteries have been investigated by using electron paramagnetic resonance spectroscopy in this work. We identified the superoxide radical anion (O2•-) as an intermediate in the ORR process using 5,5-dimethyl-pyrroline N-oxide as a spin trap, while no O2•- in OER was detected during the charge process. These findings provide insightful understanding on the fundamental oxygen reaction mechanisms in rechargeable nonaqueous Li-O2 batteries.

Citation: 
Cao R, ED Walter, W Xu, EN Nasybulin, P Bhattacharya, ME Bowden, MH Engelhard, and J Zhang.2014."The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries."ChemSusChem 7(9):2436-2440. doi:10.1002/cssc.201402315
Authors: 
R Cao
ED Walter
W Xu
EN Nasybulin
P Bhattacharya
ME Bowden
MH Engelhard
J Zhang
Instruments: 
Volume: 
7
Issue: 
9
Pages: 
2436-2440
Publication year: 
2014

Effect of Composition and Heat Treatment on MnBi Magnetic Materials.

Abstract: 

The metallic compound MnBi is a promising rare-earth-free permanent magnet material. Compare to other rare-earth-free candidates, MnBi stands out for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. Several groups have demonstrated that the Hci of MnBi compound in thin film or in powder form can exceed 12 kOe and 26 kOe at 300 K and 523 K, respectively. Such steep increase in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. The reaction between Mn and Bi is peritectic, so Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, the composition of the Mn-Bi alloy with the largest amount of the desired LTP (low temperature phase) MnBi and highest saturation magnetization will be over-stoichiometric and rich in Mn. The amount of additional Mn required to compensate the Mn precipitation depends on solidification rate: the faster the quench speed, the less Mn precipitates. Here we report a systematic study of the effect of composition and heat treatments on the phase contents and magnetic properties of Mn-Bi alloys. In this study, Mn-Bi alloys with 14 compositions were prepared using conventional metallurgical methods such as arc melting and vacuum heat treatment, and the obtained alloys were analyzed for compositions, crystal structures, phase content, and magnetic properties. The results show that the composition with 55 at.% Mn exhibits the highest LTP MnBi content and the highest magnetization. The sample with this composition shows >90 wt.% LTP MnBi content. Its measured saturation magnetization is 68 emu/g with 2.3 T applied field at 300 K; its coercivity is 13 kOe and its energy product is 12 MGOe at 300 K. A bulk magnet fabricated using this powder exhibits an energy product of 8.2 MGOe.

Citation: 
Cui J, JP Choi, E Polikarpov, ME Bowden, W Xie, G Li, Z Nie, N Zarkevich, MJ Kramer, and DD Johnson.2014."Effect of Composition and Heat Treatment on MnBi Magnetic Materials."Acta Materialia 79:374-381. doi:10.1016/j.actamat.2014.07.034
Authors: 
J Cui
JP Choi
E Polikarpov
ME Bowden
W Xie
G Li
Z Nie
N Zarkevich
MJ Kramer
DD Johnson
Volume: 
Issue: 
Pages: 
Publication year: 
2014

Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C.

Abstract: 

The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and sealed fused quartz ampoule. The iodine was added to glass frit as KI in quantities of 100–24000 ppm iodine (by mass), each mixture was added to an ampoule, the ampoule was heated at 1000 °C for 2 h and then air quenched. In samples with ≥12000 ppm iodine, low viscosity salt phases were observed on the surface of the melts during cooling that solidified into a white coating upon cooling. These salts were identified as mixtures of KI, NaI, and Na2SO4 with X-ray diffraction (XRD). The iodine concentrations in glass specimens were analyzed with inductively-coupled plasma mass spectrometry and the overall iodine solubility was determined to be 10000 ppm by mass. Several crystalline inclusions of iodine sodalite, Na8(AlSiO4)6I2, were observed in the 24000 ppm specimen and were verified with micro-XRD and wavelength dispersive spectroscopy.

Citation: 
Riley BJ, MJ Schweiger, DS Kim, WW Lukens, BD Williams, C Iovin, CP Rodriguez, NR Overman, ME Bowden, DR Dixon, JV Crum, JS Mccloy, and AA Kruger.2014."Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C."Journal of Nuclear Materials 452(1-3):178-188. doi:10.1016/j.jnucmat.2014.04.027
Authors: 
BJ Riley
MJ Schweiger
DS Kim
WW Lukens
BD Williams
C Iovin
CP Rodriguez
NR Overman
ME Bowden
DR Dixon
JV Crum
JS Mccloy
AA Kruger
Volume: 
452
Issue: 
Pages: 
178-188
Publication year: 
2014

In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors.

Abstract: 

Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

Citation: 
Jeon JW, R Sharma, P Meduri, BW Arey, HT Schaef, J Lutkenhaus, JP Lemmon, PK Thallapally, MI Nandasiri, BP McGrail, and SK Nune.2014."In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors."ACS Applied Materials & Interfaces 6(10):7214-7222. doi:10.1021/am500339x
Authors: 
JW Jeon
R Sharma
P Meduri
BW Arey
HT Schaef
J Lutkenhaus
JP Lemmon
PK Thallapally
MI Nasiri
BP McGrail
SK Nune
Instruments: 
Volume: 
6
Issue: 
10
Pages: 
7214-7222
Publication year: 
2014

Pages