
The Global
Arrays Toolkit

CSCS

The Global Arrays Toolkit
“Shared-Memory” Programming for “Distributed-Memory”

Computers

Tim Stitt PhD
stitt@cscs.ch

Swiss National Supercomputing Centre
Manno, Switzerland

7th July 2008

1 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Part I

Introduction

2 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
The Global Arrays Toolkit in a Sentence

Definition

The Global Arrays (GA) Toolkit is an API for providing a
portable “shared-memory” programming interface for
“distributed-memory” computers.

3 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Shared-Memory Systems

Advantages

1 Global view of shared data (global

indexing)

2 Data mapping usually corresponds

to original problem

3 More intuitive and (arguably)

simpler programming paradigm

Disadvantages

1 Details of data locality is obscured

2 Programmer needs to avoid race

conditions and synchronise

updates to shared resources

4 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Distributed-Memory Systems

Advantages

1 Data locality is explicit

2 Highly scalable

3 Generally requires less

expensive hardware

Disadvantages

1 More difficult programming

paradigm

2 More complicated data access

3 Programmer needs to manage

all communication and

synchronisation

5 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Global Arrays - The Best of Both Worlds?

Features

1 Distributed multidimensional

arrays accessed through a

shared-memory programming

style

2 Single shared data structure

(with global indexing)

3 Scalability of

distributed-memory systems

4 Only useable for array data

structures

6 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Global Arrays’ Model of Computation

7 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Global Arrays Toolkit

1 Shared-memory model in context of distributed arrays

2 Much simpler than message-passing for many applications

3 Complete environment for parallel code development
(including both task- and data-parallelism)

4 Compatible with MPI including packages such as PETSc

5 Data locality control similar to
distributed-memory/message-passing model More Info

6 Library-based; no special compiler required

7 Scalable

8 One-sided communication (i.e no co-operative
hand-shaking) for point-point communications More Info

8 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Global Arrays Toolkit . . . continued

Some Facts

1 Developed by Jarek Nieplochal et al. at Pacific Northwest National

Laboratory (PNNL) [1]

2 The GA Toolkit has been public-domain since 1994

3 Employed in several large codes: NWChem, GAMESS-UK and MOLPRO

4 Language interfaces include: Fortran, C, C++ and Python (approx. 200

routines[4])

5 Implements both blocking and non-blocking local/remote memory access

More Info

9 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Structure of Global Arrays Toolkit

10 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Remote Data Access - Example

Message-Passing

if (PID != 0) then
pack data in message

send message to PE (0)
else

copy local data to array

do message=1,3
receive message from ID (n)
unpack message to array

end do

end if

GA Toolkit

if (ID == 0) then

call NGA_GET (ga , lo , hi , array , stride)
end if

11 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
NGA GET() Flowchart

(a)

(b)

(c)

(d)

12 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Source Code and Support

1 Latest Stable Version (4.2)

2 Homepage at http://www.emsl.pnl.gov/docs/global/
3 Platforms supported (32-bit and 64-bit)

IBM SP, BlueGene
Cray X1, XD1, XT3 and XT4
Linux Clusters with Ethernet, Myrinet, Infiniband, or
Quadrics
Solaris
Fujitsu
Hitachi
NEC
HP
Windows

13 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
Supporting Libraries

The GA Toolkit requires a number of lower-level libraries for
operation:

MPI[3] (e.g. job startup, run-time execution and collective
communications)

ARMCI (primary communication layer) More Info

Memory Allocator (MA) More Info

Disk Resident Arrays (DRA)[7] optional More Info

14 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
When To Use GA - Rules of Thumb

Guidelines - When To Use GA

1 Applications with dynamic or irregular communication
patterns

2 Calculations driven by dynamic load-balancing

3 Need one-sided access to shared data structures

4 Need high-level operations on distributed arrays and/or for
out-of-core array-based algorithms (GA+DRA)

5 When message-passing coding becomes too complicated

6 Portability and performance is important

15 / 150

The Global
Arrays Toolkit

CSCS

Introduction

Global Arrays
Toolkit - A
Definition

Overview of
Standard HPC
Architectures

Global Arrays

The Global
Arrays Toolkit

Introduction
When Not To GA Use - Rules of Thumb

Guidelines - When Not To Use GA

1 Require nearest neighbour communications with regular
communication patterns

2 When synchronisation with cooperative point-point
communication is required (e.g. Cholesky Factorisation)

3 When compiler optimisation and parallelisation is more
effective

4 Parallel language support and compiler tools are sufficient

16 / 150

The Global
Arrays Toolkit

CSCS

GA
Programming
Basics

GA Template

GA Initialisation

GA Termination

GA Process
Information

GA Data Types

GA Compila-
tion/Execution

Exercise 1

Part II

GA Programming Basics

17 / 150

The Global
Arrays Toolkit

CSCS

GA
Programming
Basics

GA Template

GA Initialisation

GA Termination

GA Process
Information

GA Data Types

GA Compila-
tion/Execution

Exercise 1

GA Basics
Simplest GA Program Template

Fortran Template

program GA_template

use mpi

implicit none

! Include GA Headers

#include "mafdecls.fh"

#include "global.fh"

integer : : error

! Intitialize Message -Passing

call mpi_init (error)

! Intitialize GA Library

call ga_initialize ()

. . . processing . . .

! Terminate GA Library

call ga_terminate ()

! Terminate Message -Passing Lib

call mpi_finalize (error)

end program GA_template

C Template

#include <s t d i o . h>

// Include GA Headers

#include "mpi.h"

#include "ga.h"

#include "macdecls.h"

int main (int argc , char ∗∗argv) {

// Intitialize Message -Passing

MPI_Init(&argc , &argv) ;

// Intitialize GA Library

GA_Initialize () ;

. . . processing . . .

// Terminate GA Library

GA_Terminate () ;

// Terminate Message -Passing

MPI_Finalize () ;

return 0 ;
}

18 / 150

The Global
Arrays Toolkit

CSCS

GA
Programming
Basics

GA Template

GA Initialisation

GA Termination

GA Process
Information

GA Data Types

GA Compila-
tion/Execution

Exercise 1

GA Basics
GA Initialize() - Collective Operation

Important: The Message-Passing library (e.g. MPI) must be
initialised before GA is initialised.

There are two interfaces to initialise Global Arrays:

Interface 1

Fortran: subroutine ga initialize()
C: void GA Initialize()
GA can consume as much memory as application needs to allocate global arrays

Interface 2

Fortran: subroutine ga initialize ltd(limit)
C: void GA Initialize ltd(size t limit)
Aggregate GA memory is limited to limit bytes when allocating global arrays

19 / 150

The Global
Arrays Toolkit

CSCS

GA
Programming
Basics

GA Template

GA Initialisation

GA Termination

GA Process
Information

GA Data Types

GA Compila-
tion/Execution

Exercise 1

GA Basics
GA Terminate() - Collective Operation

The conventional way to terminate a GA program is to call the
following function:

Fortran: subroutine ga terminate()
C: void GA Terminate()

The programmer can also abort a running program (e.g. within
a error-handling routine) by calling the function:

Fortran: subroutine ga error(message,code)
C: void GA Error(char *message,int code)

message User Error Message
code Termination Error Code

20 / 150

The Global
Arrays Toolkit

CSCS

GA
Programming
Basics

GA Template

GA Initialisation

GA Termination

GA Process
Information

GA Data Types

GA Compila-
tion/Execution

Exercise 1

GA Basics
Process Information

Within a parallel programming environment there are two
important questions to ask:

How many processes are working together?

This can be answered in a GA environment by calling the following function:

Fortran: integer function ga nnodes()
C: int GA Nnodes()

What is the ID of each process?

This can be answered in a GA environment by calling the following function:

Fortran: integer function ga nodeid()
C: int GA Nodeid()

21 / 150

The Global
Arrays Toolkit

CSCS

GA
Programming
Basics

GA Template

GA Initialisation

GA Termination

GA Process
Information

GA Data Types

GA Compila-
tion/Execution

Exercise 1

GA Basics
Data Types

MT F INT Integer (4/8 bytes)

MT F REAL Real

MT F DBL Double Precision

MT F SCPL Single Complex

MT F DCPL Double Complex

Table: Fortran Data Types

C INT int

C LONG long

C FLOAT float

C DBL double

C SCPL single complex

C DCPL double complex

Table: C Data Types
22 / 150

The Global
Arrays Toolkit

CSCS

GA
Programming
Basics

GA Template

GA Initialisation

GA Termination

GA Process
Information

GA Data Types

GA Compila-
tion/Execution

Exercise 1

GA Basics
Compilation

Fortran 90 Codes
Compile with:

mpif90 -I/path_to_GA/include -preprocess_flag \$OPT_Flags -o foo foo.f90

-L/path_to_GA/lib/ -lglobal -lma -lsci -llinalg -larmci -ltcgmsg-mpi -lmpich -lm

C Codes
mpicc -I/path_to_GA/include -preprocess_flag \$OPT_Flags -o foo foo.c

-L/path_to_GA/lib/ -lglobal -lma -lsci -llinalg -larmci -ltcgmsg-mpi -lmpich -lm -lm

23 / 150

The Global
Arrays Toolkit

CSCS

GA
Programming
Basics

GA Template

GA Initialisation

GA Termination

GA Process
Information

GA Data Types

GA Compila-
tion/Execution

Exercise 1

GA Basics
Programming Exercise

Exercise 1 (15 minutes)

Overview

Modify the GA code template given in the slides to develop a parallel “Hello

World” program.

Requirements

Your code should display a “Hello World” message for each participating

process (test with 1,2 and 4 processes)

Each process message should display it’s ID along with the total number of

participating processes

Sample Output

Hello World from process 1 of 4

Hello World from process 2 of 4

Hello World from process 3 of 4

Hello World from process 0 of 4

24 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Part III

Creating and Destroying Global Arrays

25 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
Three Ways to Create Global Arrays

There are three (3) methods for creating global arrays:

1 The original interface supporting:

regular distributions
irregular distributions

2 Duplicating an existing global array

3 A new interface providing more explicit functionality

26 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
Original Interface - Regular Distributions

Definition

A regular distribution attempts to assign the same number of
elements to each process. This allows for better load-balancing
and overall parallel efficiency.

(a) Row Block-
ing

(b) Column
Blocking

(c) 2D Block-
ing

Figure: Regular Array Distributions

27 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
Original Interface - Regular Distributions . . . continued

To create global arrays with regular distributions, call the
following function:

Fortran: logical function nga create(type, ndim, dims, name, chunk, g a)

C: int NGA Create(int type, int ndim, int dims[], char *name, int chunk[])

type GA Data Type e.g. MT F DBL
ndim Number of Array Dimensions
dims Vector of Array Dimension Sizes
name Unique Character Identification String
chunk Minimum Blocking Size for each Dimension

g a Array Handle Returned for Future Reference

28 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
Original Interface - Regular Distributions . . . continued

Creating a Global Array - Fortran Code Sample

integer , dimension (2) : : chunk , dims
integer : : handle_A

! ... GA Initialization ...

! Set Global Array Dimensions

dims (1)=100000
dims (2)=100000

! Use Default Blocking

chunk(1)=−1
chunk(2)=−1

if (. not . nga_create (MT_F_DBL , 2 , dims , ’Array_A ’ , chunk , handle_A)) then

call ga_error ("Unable to create Global Array for Array A’,handle_A")
end if

! ... GA Termination ...

29 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
Original Interface - Irregular Distributions

Definition

In certain domains it can be beneficial to apply an irregular
distribution, were the number of elements assigned per process
is uneven.

Figure: Irregular Array Distributions

30 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
Original Interface - Irregular Distributions . . . continued

To create global arrays with irregular distributions, call the
following function:

Fortran: logical function nga create irreg(type, ndim, dims, name, map nblock,

g a)

C: int NGA Create irreg(int type, int ndim, int dims[], char *name, int nblock[],

int map[])

type GA Data Type e.g. MT F DBL
ndim Number of Array Dimensions
dims Vector of Array Dimension Sizes
name Unique Character Identification String
map Starting Index for Each Block

nblock Number of Blocks Each Dimension is Divided Into
g a Array Handle Returned for Future Reference

31 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
Original Interface - Irregular Distributions . . . continued

An Irregular Distribution Example

Consider the following irregular array distribution i.e. the
distribution is non-uniform because processes P1 and P4 get
20 elements each and processes P0, P2, P3 and P5 receive
only 10 elements each.

Fortran Code

integer : : map (5) , nblock (2) , dims (2) , A

! Set Dimension Blocks

nblock (1)=3; nblock (2)=2

! Set Dimension Sizes

dims (1)=8; dims (2)=10

! Set Starting Indices

map (1)=1; map (2)=3; map (3)=7; map (4)=1; map (5)=6

nga_create_irreg (MT_F_DBL , 2 , dims , ’Array_A ’ ,&
map , nblock , A)

32 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
Original Interface - Irregular Distributions . . . continued

With an irregular distribution, the programmer specifies
distribution points for every dimension using the map array
argument.

The GA library creates a distributed array that is a
Cartesian product of distributions for each dimension

33 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
Duplicating Global Arrays

Global arrays can be duplicated (i.e. inherit all the properties of
an existing global array including distribution, type, dimensions
etc.) with a call to the following function:

Fortran: logical function ga duplicate(g a, g b, name)

C: int GA Duplicate(int g a, char *name)

g a Existing Global Array
g b New Duplicated Global Array

name Unique Character Identification String

34 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
New Interface

Due to the increasingly varied ways in which global arrays can
be configured, a new set of flexible interfaces has been recently
developed for creating global arrays.

The new interface supports all the configurations that were accessible

with the old interfaces

It is anticipated that a new range of global array properties will only

be supported via the new interface

The creation of global arrays, using the new interface,
progresses with calls to the following functions:

Step 1 - Mandatory

Fortran: integer function ga create handle()

C: int GA Create handle()

Step 1: Return a handle to the new global array
35 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
New Interface . . . continued

Step 2 - Mandatory

Fortran: subroutine ga set data(g a, ndim, dims, type)

C: void GA Set data(int g a, int ndim, int dims[], int type)

Step 2: Set the required properties of the global array

Step 3: Optional properties of the global array can now be set
using the following collection of individual ga set XXX()
routines.

Step 3 - Optional

Fortran: subroutine ga set array name(g a, name)

C: void GA Set array name(int g a, char *name)

36 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
New Interface . . . continued

Step 3 - Optional

Fortran: subroutine ga set chunk(g a, chunk)

C: void GA Set chunk(int g a, int chunk[])

Note: The default setting of chunk is −1 along all dimensions

Step 3 - Optional

Fortran: subroutine ga set irreg distr(g a, map, nblocks)

C: void GA Set irreg distr(int g a, int map[], int nblock[])

37 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating Global Arrays
New Interface . . . continued

Step 4: After all the array properties have been set, memory for
the global array is allocated by a call to the following function:

Step 4 - Mandatory

Fortran: logical function ga allocate(g a)

C: int GA Allocate(int g a)

After this (successful) call, the global array is ready for use.

38 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Destroying Global Arrays

Global arrays can be destroyed with a call to the following
function:

Fortran: logical function ga destroy(g a)

C: void GA Destroy(int g a)

g a Global Array to be Destroyed

39 / 150

The Global
Arrays Toolkit

CSCS

Creating and
Destroying
Global Arrays

Creating Global
Arrays

The Simple
Interface

Duplicating
Global Arrays

The New
Interface

Destroying
Global Arrays

Exercise 2

Creating/Destroying Global Arrays
Programming Exercise

Exercise 2 (30 minutes)

Requirements

Modify your GA Template to create and destroy four (4) global arrays with the

following requirements: (test your solution with 6 processes)

1 Create a 5000x5000 Integer Global Array using a column-striped regular

distribution

2 Create the irregular distributed Global Array given in the slides

Look up the GA routine ga print distribution() in the Interface

Documentation[4] and use it to verify the correct creation of the array

3 Duplicate the Global Arrays given in part (1) and part (2)

4 Create a fourth global array (with the same properties given in part (1))

using the new interface creation methods

5 Destroy all the created global arrays

40 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

Part IV

One-Sided Communications

41 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
Introduction

One-Sided, Non-Collective Communications

The Global Arrays Toolkit provides the programmer with
one-sided , non-collective communication operations for
accessing data in global arrays without the cooperation of the
process or processes that store the referenced data.

Benefits

1 The processes containing the referenced data are oblivious to other

processes accessing and/or updating their data items

2 Since global array indices are still used to reference non-local data

items, the calling process does not need to specify process IDs and

remote address information

42 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
Introduction . . . continued

Remote Blockwise Read/Write ga put(), ga get()

Remote Atomic Update ga acc(), ga read inc()
ga scatter acc()

Remote Elementwise Read/Write ga scatter(), ga gather()

Table: The Three Categories of One-Sided Operations in GA

43 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
NGA Put() - Local Communication

To place data from a local buffer into a section of a global
array, use the following function:

Fortran: subroutine nga put(g a, lo, hi, buf, ld)

C: void NGA Put(int g a, int lo[], int hi[], void *buf, int ld[])

g a Global Array Handle
lo Array of Starting Patch Indices
hi Array of Ending Patch Indices

buf Local Buffer containing Data Values
ld Leading Dimensions for Buffer

44 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
NGA Put() - Local Communication

Figure: GA Put() One-Sided Operation

45 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
NGA Get() - Local Communication

To place data from a section of a global array into a local
buffer, use the following function:

Fortran: subroutine nga get(g a, lo, hi, buf, ld)

C: void NGA Get(int g a, int lo[], int hi[], void *buf, int ld[])

g a Global Array Handle
lo Array of Starting Patch Indices
hi Array of Ending Patch Indices

buf Local Buffer to Receive Data Values
ld Leading Dimensions for Buffer

46 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
Atomic Accumulate

Accumulation

Frequently, data moved in a put operation has to be combined
with the data at the target process, rather than replace it i.e.
accumulation.

The Global Arrays Toolkit provides two operations
accumulate() and read inc() which allows a global array patch
(array section) or element to be remotely updated, with the
following benefits:

1 Operations are atomic i.e. the same patch of global array
can be updated by multiple processes without loss of
correctness or consistency

2 The processes owning the data are not involved in the
atomic updates

47 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
Atomic Accumulate . . . continued

Figure: GA Atomic Accumulate Operation

48 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
NGA Acc()

To perform an atomic accumulate on a global array patch, call
the following function:

Fortran: subroutine nga acc(g a, lo, hi, buf, ld,alpha)

C: void NGA Acc(int g a, int lo[], int hi[], void *buf, int ld[], void *alpha)

g a Global Array Handle
lo Array of Starting Patch Indices
hi Array of Ending Patch Indices

buf Local Buffer containing Data Values
ld Leading Dimensions for Buffer

alpha The Scaling Factor

49 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
NGA Read inc() - Local Communication

To perform an atomic accumulate on a single global array
element, call the following function:

Fortran: integer function nga read inc(g a, subscript,inc)

C: long NGA Read inc(int g a, int subscript[], long inc)

g a Global Array Handle
subscript Vector of Element Indices

inc Increment Value

Notes

1 The original global array element is returned

2 Only applies to Integer Global Arrays

3 Can be used to implement global counters for dynamic balancing

50 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
NGA Read inc() . . . continued

Figure: GA Atomic Read-Increment Operation

51 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
NGA Scatter() - Local Communication

Definition

Scatter allows a set of values to be scattered (distributed) to
non-contiguous positions in a global array.

Figure: Scattering Five Elements to a Global Array

52 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
NGA Scatter() . . . continued

To perform a scatter operation, call the following function:

Fortran: subroutine nga scatter(g a, v, indices,n)

C: void NGA Scatter(int g a, void *v, int indices[], int n)

g a Global Array Handle
v Vector of Values

indices Array of Scatter Indices
n Number of Values

53 / 150

The Global
Arrays Toolkit

CSCS

One-Sided
Communica-
tions

Introduction

Put

Get

Atomic
Accumulate

Scatter/Gather

One-Sided Communications
NGA Gather() - Local Communication

Definition

Gather allows a set of values to be gathered (collected) from
non-contiguous global array positions to a local buffer.

To perform a gather operation, call the following function:

Fortran: subroutine nga gather(g a, v, indices,n)

C: void NGA Gather(int g a, void *v, int indices[], int n)

g a Global Array Handle
v Local Vector of Values

indices Array of Gather Indices
n Number of Values

54 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Part V

Utility Operations

55 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Locality Information
NGA Locate() - Local Operation

To determine the ID of the process that stores a given Global
Array Index, the following routine can be used:

Fortran: logical function nga locate(g a, subscript, owner)
C: int NGA Locate(int g a, int subscript[])

Figure: NGA Locate() Operation

subscript Array containing Global Index

owner Process ID of Owner

56 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Locality Information
NGA Locate region() - Local Operation

To determine the ID(s) of the process(es) that store a given
Global Array Patch, the following routine can be used:

Fortran: logical function nga locate region(g a, lo, hi, map, proclist, np)

C: int NGA Locate region(int g a, int lo[], int hi[], int map[], int procs[])

Figure: NGA Locate region()

lo Starting Indices for Patch

hi Ending Indices for Patch

map Process Map Info

proclist List of Patch Owners

np Number of Patch Owners

57 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Locality Information

Frequently a process will want to modify a patch of a global
array that is stored locally. To provide direct access to this
patch (and improve overall performance) the following
procedure is required:

Procedure For Direct Access to Local Patch

1 Determine the local patch of the Global Array
i.e. Which Part of the Global Array does the Process Own?

2 Access the Local Data Patch

3 Operate on the Data Patch

4 Release Access to the Data Patch

58 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Locality Information
NGA Distribution() - Local Operation

To determine the index range of a Global Array that a process
owns, call the following routine:

Fortran: subroutine nga distribution(g a, process, lo, hi)

C: void NGA Distribution(int g a, int process, int lo[], int hi[])

Figure: GA Distribution Operation

lo Starting Indices for Patch

hi Ending Indices for Patch

process Process ID

59 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Locality Information
NGA Access() - Local Operation

To obtain read/write access to the local patch data owned by
the calling process, call the following routine:

Fortran: subroutine nga access(g a, lo, hi, index, ld)

C: void NGA Access(int g a, int lo[], int hi[], void *index, int ld[])

NGA Access() - Fortran Example

status=nga_create (MT_F_DBL , 2 , dims ,&
’Array’ , chunk , g_a)

. . .
call nga_distribution (g_a , me , lo , hi)
call nga_access (g_a , lo , hi , index , ld)
call foo (dbl_mb (index) , ld (1))
call nga_release (g_a , lo , hi)

subroutine foo (a , ldl)
double precision a (ld1 ,∗)

end subroutine

lo Starting Indices for Patch

hi Ending Indices for Patch

index Patch Starting Address

ld Leading Dimension of Patch

60 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Locality Information
NGA Release() - Local Operation

To release access to a Global Array patch (which was only used
for reading), call the following routine:

Fortran: subroutine nga release(g a, lo, hi)

C: void NGA Access(int g a, int lo[], int hi[])

To release access to a Global Array patch (which was
modified), call the following routine:

Fortran: subroutine nga release update(g a, lo, hi)

C: void NGA Access update(int g a, int lo[], int hi[])

61 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Printing Global Arrays

Global Array Display Options

The Global Arrays Tookit provides routines to print:

1 the contents of a Global Array

2 the contents of a Global Array patch

3 the status of array operations

4 a summary of allocated arrays

62 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Printing
GA Print()/GA Print patch() - Collective Operations

To print an entire Global Array to standard output (with
formatting) call the following routine:

Fortran: subroutine ga print(g a)

C: void GA Print(int g a)

To print a Global Array patch to standard output call the
following routine:

Fortran: subroutine ga print patch(g a, lo, hi, pretty)

C: void GA Print patch(int g a, int lo[], int hi[], int pretty)

1 pretty=0 - dump all elements of patch without formatting

2 pretty=1 - display labelled array with formatted rows and columns

63 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Printing
GA Print stats() - Local Operation

To print global statistics about array operations for the calling
process, call the following routine:

Fortran: subroutine ga print stats()

C: void GA Print stats()

This routine will print:

1 the number of calls to the GA create(), duplicate(), destroy(), get(),

put(), scatter(), gather() and read and inc() operations

2 the total amount of data moved in the GA primitive operations

3 the amount of data moved in the primitive GA operations to logically

remote locations

4 the maximum memory consumption of Global Arrays (high-water

mark)

64 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Printing

To print distribution information (array mapping to processes)
for a Global Array, call the following routine:

Fortran: subroutine ga print distribution(g a)

C: void GA Print distribution(int g a)

To display summary information on allocated arrays call the
following routine:

Fortran: subroutine ga summarize(verbose)

C: void GA Summarize(int verbose)

1 verbose = 0 or 1

65 / 150

The Global
Arrays Toolkit

CSCS

Utility
Operations

Locality
Information

Printing

Other Routines

Other Routines

Further Utility Routines

The Global Arrays Toolkit provides other utility routines that
are described further in the GA documentation. They include
routines for:

1 Memory Availability

2 Cluster Topology and Details

3 Broadcast/Reduction

4 Array Dimension, Type and Name Inquiry

66 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Part VI

Collective Communications

67 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Introduction

Definition

The Global Arrays Toolkit provides collective operations which
can be applied to whole global arrays or patches of global
arrays.

Collective operations require that all processes initiate the
collective call (although in general they only operate on
their local array data)

GA collective operations span the following categories:

1 Basic Array Operations

2 Linear Algebra Operations

3 Interfaces to 3rd Party Software Packages

68 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Array Initialisation

Since GA doesn’t specifically initialise newly created arrays, a
global array can be set to 0 with the the following routine:

Fortran: subroutine ga zero(g a)
C: void GA Zero(int g a)

If a global array is required to be initialised with a non-zero
value, the following routine can be called:

Fortran: subroutine ga fill(g a, value)
C: void GA Fill(int g a, void *value)

Note: The type of value should match the type of the global
array g a.

69 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
GA Scale()

To scale all the elements in a global array by the factor s, call
the following routine:

Fortran: subroutine ga scale(g a, s)
C: void GA Scale(int g a, void *s)

Note: The type of s should match the type of the global array
g a.

70 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Copying Arrays

To copy the contents of one global array to another, call the
following routine:

Fortran: subroutine ga copy(g a, g b)
C: void GA Copy(int g a, g b)

1 The global arrays g a and g b should be of the same type

2 The global arrays g a and g b should have the same
number of elements and dimensions (but can be copied to
an array with a different shape and/or distribution)

71 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Copying Arrays . . . continued

Figure: Copying Global Arrays on 3x3 Process Grid

Array Copy - Fortran Example

! Create Irregular Distribution

status=nga_create_irreg (MT_F_DBL , 2 , dims , ’A’ , map , nblocks , A)

! Create Regular Distribution

status=nga_create (MT_F_DBL , 2 , dims , ’B’ , chunks , B)

. . . Initialise A . . .

! Copy global array A to global array B

call ga_copy (A , B)

72 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Initialising Array Patches

GA also provides analogous routines for initialising array
patches (as opposed to whole arrays):

Fortran: subroutine nga zero patch(g a, lo, hi)
C: void GA Zero patch(int g a, int lo[], int hi[])

lo Starting Indices of Array Patch

hi Ending Indices of Array Patch

Fortran: subroutine nga fill patch(g a, lo, hi, value)
C: void GA Fill patch(int g a, int lo[], int hi[], void *value)

73 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
NGA Copy patch()

One of the most fundamental GA operations is
nga copy patch(). This operation copies a patch in one global
array to a patch in another global array.

Fortran: subroutine nga copy patch(trans, g a, lo1, hi1, g b, lo2, hi2)

C: void GA Zero patch(char trans, int g a, int lo1[], int hi1[], int g b, int lo2[],

int hi2[])

trans Transpose Patch (’Y’ or ’N’)

Notes:
1 The source patch most be on a different global array than the

destination patch

2 Array patches must be the same type

3 Array patches must have the same number of elements (but not

necessarily the same shape)

74 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Copying Array Patches

Figure: Global Array Patch Copy with Reshape

75 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Copying Array Patches . . . continued

Figure: Global Array Patch Copy with Reshape and Transpose

76 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Matrix Addition

GA provides a range of routines for performing linear algebra
operations on Global Arrays (routines are available for both
whole array and patches).

To add two global arrays A and B (element-wise) with the
result placed into array C, call the following routine:

Whole Arrays

Fortran: subroutine ga add(alpha, g a, beta, g b, g c)

C: void GA Add(void *alpha, int g a, void *beta, int g b, int g c)

C = αA+ βB

77 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Matrix Addition . . . continued

Patches

Fortran: subroutine ga add patch(alpha, g a, lo1, hi1, beta, g b, lo2, hi2, g c,

lo3, hi3)

C: void GA Add(void *alpha, int g a, int lo1[], int hi1[], void *beta, int g b, int

lo2[], int hi2[], int g c, int lo3[], int hi3[])

78 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Matrix Multiplication

To perform matrix multiplication between two global arrays A
and B (with the result placed in global array C), call the
following operation:

Fortran: subroutine nga matmul patch(transa, transb, alpha, beta, g a, alo, ahi,

g b, blo, bhi, g c, clo, chi)

C: void NGA Matmul patch(char transa, char transb, void* alpha, void *beta, int

g a, int alo[], int ahi[], int g b, int blo[], int bhi[], int g c, int clo[], int chi[])

C = αA ∗B + βC

Note:

1 A, B and C must be 2D Global Arrays

79 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Other 2D Collective Operations

There are two other GA operations that can only be applied to
2D Global Arrays:

Fortran: subroutine ga symmetrize(g a)

C: void GA Symmetrize(int g a)

A = 1
2(A+A′)

Fortran: subroutine ga transpose(g a, g b)

C: void GA Transpose(int g a, int g b)

B = A′

80 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Further Operations

GA provides a wealth of whole array and patch array routines for many

linear operations (please see [4] for more detailed information):

Further operations include:

1 Dot Products

2 Elemental Operations

Element Addition, Multiplication, Division, Reciprocals

Maximum/Minimum Elements

3 Diagonal Operations

Diagonal Shifts

Diagonal Initialisation/Updates

Diagonal Addition

4 Row/Column Scaling

5 Norms

6 Medians

81 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
3rd Party Interfaces

ScaLAPACK

ScaLAPACK[5] is a well known software library for linear algebra computations on

distributed-memory architectures. GA interfaces with this library to solve systems

of linear equations and also to invert matrices.

PeIGS

The PeIGS library contains routines for solving standard and generalized real

symmetric eigensystems. For more information about the availability of PeIGS

with GA contact: fanngi@ornl.gov.

PETSc

GA can be intermixed with PETSc[6] routines (a library for the parallel scalable
solution of scientific applications modelled by partial differential equations).
Instructions for using PETSC with GA can be found at:

http://www.emsl.pnl.gov/docs/global/petsc.html

82 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
GA Solve()

To solve the system of linear equations AX = B, call the
following routine:

Fortran: integer function ga solve(g a, g b)

C: int GA Solve(int g a, int g b)

Notes:
1 In the first instance, a Cholesky factorisation and Cholesky

solve will be performed

If a Cholesky factorisation is not successful, then a LU
factorisation will be performed with a forward/backward
substitution

2 On exit, B will contain the solution X

83 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
GA Llt solve()

To solve a system of linear equations AX = B using the
Cholesky factorisation of an NxN double precision symmetric
positive definite matrix A, call the following routine:

Fortran: integer function ga llt solve(g a, g b)

C: int GA Llt solve(int g a, int g b)

Notes:

1 On exit, B will contain the solution X

84 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
GA Lu solve()

To solve a system of linear equations op(A)X = B (where
op(A) = A or A′) using a LU factorisation of a general real
matrix A, call the following routine:

Fortran: subroutine ga lu solve(g a, g b)

C: int GA Lu solve(int g a, int g b)

Notes:

1 On exit, B will contain the solution X (possibly multiple
RHS vectors)

85 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
GA Spd inverse()

To compute the inverse of a double precision matrix using the
Cholesky factorisation of an NxN double precision symmetric
positive definite matrix A, call the following routine:

Fortran: integer function ga spd inverse(g a)

C: int GA Spd inverse(int g a)

Notes:

1 On exit, A will contain the inverse

86 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Improving Synchronisation Control of Collective Operations

Redundant Synchronisation

In some cases it may be possible (if you are careful) to remove
redundant implicit synchronisation within collective GA
operations (and improve performance).

1 Collective operations exploit implicit synchronisation to ensure local

data is in a consistent state before it is accessed locally i.e. no

outstanding communication operations

2 In many cases the internal synchronisation points, within back-back

collective communications (or if the user calls an explicit

synchronisation operation before the collective communication), can

be removed:

87 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
GA Mask sync()

To set the implicit synchronisation points for the next collective
operation, call the following routine:

Fortran: subroutine ga mask sync(prior sync mask, post sync mask)

C: void GA Mask sync(int prior sync mask, int post sync mask)

prior sync mask When false, disables synchronisation at start

of next collective call

post sync mask When false, disables synchronisation at end

of next collective call

88 / 150

The Global
Arrays Toolkit

CSCS

Collective
Communica-
tions

Introduction

Initialisation

Copying

Array Patches

Linear Algebra

3rd Party
Interfaces

Synchronisation
Control

Collective Communications
Improving Synchronisation Control of Collective Operations . . . continued

Synchronisation Mask - Fortran Example

! Mask Implicit Synchronisation

call ga_duplicate (g_a , g_b)
call ga_mask_sync (0 , 1)
call ga_zero (g_b)

89 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Part VII

Inter-Process Synchronisation

90 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
Introduction

Definition

Process synchronisation refers to the coordination of
simultaneous processes to complete a task in order to get
correct runtime order and avoid unexpected race conditions.

Classification of GA Synchronisation

The Global Arrays Toolkit provides three (3) types of
synchronisation operations:

1 Lock with Mutex

2 Fence

3 Sync

91 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
Lock and Mutex

Background

A lock and mutex are useful primitives in shared-memory programming. A mutex

can be locked to exclusively protect access to a critical section of code e.g. to

avoid the simultaneous use of a common resource, such as a global variable.

Figure: Conflict with Shared Resource Update
92 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
Lock and Mutex . . . continued

Critical Section Algorithm

1 . Create Mutexes

. . .
2 . Lock on a Mutex

3 . Perform Critical Section Operation

4 . Unlock the Mutex

. . .
5 . Destroy Mutexes

Notes

A mutex is a lock that can be obtained (set) by a process (if it is free),

prior to a critical section of code. If a lock is set by a given process (and

the process enters the critical section) no other processes can obtain the

lock and therefore enter the critical section at the same time.

93 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
Lock and Mutex . . . continued

Figure: Mutual Exclusion Using Locks

94 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
GA Create mutexes() - Collective Operation

To create a mutex set in GA, call the following function:

Fortran: logical function ga create mutexes(number)
C: int GA Create mutexes(int number)

number Number of Mutexes in Mutex Array

Note:

1 Only one set of mutexes can exist at one time

2 Mutexes are numbered [0 . . . number − 1]
3 GA Create mutexes() is a collective operation

95 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
GA Destroy mutexes() - Collective Operation

To destroy a mutex set in GA, call the following function:

Fortran: logical function ga detroy mutexes()
C: int GA Destroy mutexes()

Note:

1 Mutexes can be created and destroyed as many times as is
needed

2 GA Destroy mutexes() is a collective operation

96 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
GA Lock()

To lock a mutex object in GA, call the following function:

Fortran: subroutine ga lock(mutex)
C: int GA Lock(int mutex)

mutex Mutex Number

Note:

1 It is a fatal error for a process to lock a mutex object that
has already been locked by this process

97 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
GA Unlock()

To unlock a mutex object in GA, call the following function:

Fortran: subroutine ga unlock(mutex)
C: int GA Unlock(int mutex)

mutex Mutex Number

Note:

1 It is a fatal error for a process to unlock a mutex object
that has not been locked by this process

98 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
Lock and Mutex . . . continued

Lock and Mutex Fortran Example

! Create Mutex Set (with one mutex)

status = ga_create_mutexes (1)

! Check if Mutex Creation Successful

if (. not . status) then

call ga_error ("ga_create_mutexes failed" , 0)
end if

! Obtain Lock

call ga_lock (0)

! Now do something in Critical Section

call ga_put (g_a , . . .)
. . .

! Release Lock

call ga_unlock (0)

! Destroy Mutexes

status = ga_destroy_mutexes (1)
if (. not . status) then

call ga_error ("ga_destroy_mutexes failed" , 0)
end if

99 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
Fence

Definition
A fence operation blocks the calling process until all the data transfers

corresponding to the Global Array operations initiated by this process are

complete.

Figure: GA Fence Operation

100 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
GA Init fence()

To initiate a fence in GA, call the following function:

Fortran: subroutine ga init fence()
C: void GA Init fence()

Note:

1 GA Init fence() initialises tracing of the completion status
of global array data movement operations

101 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
GA Init Fence() . . . continued

A fence can be called in GA with the following function:

Fortran: subroutine ga fence()
C: void GA Fence()

Note:

1 GA Fence() blocks the calling process until all Global
Array data transfers called after GA Init fence() are fully
completed.

2 GA Fence() must be called after a GA Init fence() (i.e.
called in pairs)

3 GA Init fence()/GA Fence() pairs can be nested

102 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
Fence Examples

Fortran Example 1

call ga_init_fence ()
call ga_put (g_a , . . .)
call ga_fence ()

GA Put() can return before the data reaches its final
destination. A GA Init fence()/GA Fence() pair allows the
process to wait until the data transfer is complete

Fortran Example 2

call ga_init_fence ()
call ga_put (g_a , . . .)
call ga_scatter (g_a , . . .)
call ga_put (g_b , . . .)
call ga_fence ()

The calling process will be blocked until the data movements of
two GA Puts() and one GA Scatter() are completed.

103 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
GA Sync()

Definition
The GA sync operation is a collective barrier operation which synchronises all the

processes and ensures all Global Array operations are complete after the call.

Figure: Barrier Synchronisation

104 / 150

The Global
Arrays Toolkit

CSCS

Inter-Process
Synchronisa-
tion

Introduction

Lock and Mutex

Fence

Sync

Synchronisation
GA Sync() . . . continued

A GA synch operation can be called with the following function:

Fortran: subroutine ga sync()
C: void GA Sync()

Note:

1 GA Sync operations should be inserted where necessary

2 Increased synchronisation can result in reduced application
performance

105 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Part VIII

Processor Groups

106 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Processor Groups

Definition

Processor Groups can be a useful technique for dividing the
default domain (world) of processes into separate subgroups of
processes.

Benefits for applying group management include:

1 Global Arrays created in a group are only distributed among the

processes in the group

2 Collective operations on the subgroup are restricted to the processes

in the group

3 A Synchronisation operation applied to a group will not affect the

processes residing outside the group

4 Independent parallel operations can be applied to different subgroups

concurrently

107 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Processor Groups

Figure: Decomposition of World into Subgroups

108 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Processor Groups

Important Notes

1 When applying subgroups, it is a good idea to ensure that
the default world is divided into a complete covering of
non-overlapping subgroups

2 Global Arrays are only created on the default group
(usually the world group), and most global array
operations are restricted to the default group:

Typically you change the default group prior to applying a

Global Array operation (the global array operation will

subsequently be applied to the new current default group)

Or use the GA routines that specifically accept subgroup array

handles

109 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Processor Groups
GA Pgroup create()

A new processor group can be created in GA with the following
function:

Fortran: integer function ga pgroup create(proclist,size)
C: int GA Pgroup create(int *proclist, int size)

proclist Vector of Processes
size Number of Processes in Group

This call must be executed by all processes in the new
subgroup.

The integer handle of the newly created process group will
be returned on completion of the call

110 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Processor Groups
Assigning Process Groups

A processor group can be applied to a Global Array using both
original and new interfaces:

Original Interface

Fortran: logical function nga create config(type, ndim, dims, name, chunk,

p handle, g a)

C: int NGA Create config(int type, int ndim, int dims[], char *name, int

p handle, int chunk[])

p handle Handle of Process Group

New Interface

Fortran: logical function ga set pgroup(g a, p handle)

C: int NGA Create config(int g a, int p handle)

111 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Processor Groups
Setting Default Process Group

The default process group can be set with the following routine:

Fortran: subroutine ga pgroup set default(p handle)

C: void GA Pgroup set default(int p handle)

This routine can set the default group to something other
than the default world group

This routine must be called by all processes within the
process group represented by p handle

Once the default process group is set, all subsequent
operations will be applied to the new default group.

112 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Processor Groups
Process Group Inquiry Functions

To inquire about the number of nodes in a process group, call
the following routine:

Fortran: integer function ga pgroup nnodes(p handle)

C: int GA Pgroup nnodes(int p handle)

To inquire about the local ID of the calling process within the
group, call the following routine:

Fortran: integer function ga pgroup nodeid(p handle)

C: int GA Pgroup nodeid(int p handle)

113 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Processor Groups
Process Group Inquiry Functions

To determine the handle for the current default process group,
call the following routine:

Fortran: integer function ga pgroup get default()

C: int GA Pgroup get default()

To determine the handle for the current world process group,
call the following routine:

Fortran: integer function ga pgroup get world()

C: int GA Pgroup get world()

114 / 150

The Global
Arrays Toolkit

CSCS

Processor
Groups

Introduction

Creating
Process Groups

Assigning
Process Groups

Setting Default
Process Group

Process Group
Utility
Operations

Processor Groups
Process Group Example

Default Process Group Example

! Create Subgroup A

A = ga_pgroup_create (listA , nprocA)
call ga_pgroup_set_default (A)

! Perform some parallel work

call parallel_work ()

! Reset Default Process Group to World Group

call ga_pgroup_set_default (ga_pgroup_get_world ())

contains

subroutine parallel_work ()

! Create Subgroup B

B = ga_pgroup_create (listB , nprocB)
call ga_pgroup_set_default (B)
call more_parallel_work

end subroutine

115 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Part IX

Advanced Topics

116 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Ghost Cells
Advanced Topic

Definition
Ghost cells are a common technique to reduce communication in parallel

applications that exploit domain decomposition, where the data required by a

given process to complete a calculation resides on a neighbouring process e.g.

codes that employ finite-difference and finite-element methods.

Figure: Domain Decomposition - Data Exchange

117 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Ghost Cells
Advanced Topic

Figure: Domain Decomposition With Ghost-Cells

1 Ghost cells need to be updated when they are modified on
the neighbouring process. GA allows the programmer to
perform this update with a single function.

118 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Ghost Cells
Advanced Topic

Ghost cells can be automatically created for a global array
(with regular distribution) using the following functions:

Fortran: logical function nga create ghosts(type, ndim, dims, width, name,

chunk, g a)

C: int NGA Create ghosts(int type, int ndim, int dims[], int width[], char *name,

int chunk[])

width Vector of Ghost Cell Widths in each Dimension

119 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Ghost Cells
Advanced Topic

Ghost cells can be automatically created for a global array
(with irregular distribution) using the following functions:

Fortran: logical function nga create ghosts irreg(type, ndim, dims, width,

name, map, nblocks, g a)

C: int NGA Create ghosts irreg(int type, int ndim, int dims[], int width[], char

*name, int map[], int nblocks[])

width Vector of Ghost Cell Widths in each Dimension

120 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Ghost Cells
Advanced Topic

Ghost cells can be updated with values from their adjacent
neighbours using the following functions:

Fortran: subroutine ga update ghosts(g a)

C: void GA Update ghosts(int g a)

Note:

1 The update operation assumes periodic (wrap-around)
boundary conditions (see Periodic Interfaces)

121 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Ghost Cells
Advanced Topic

Figure: Global Array With Uninitialised Ghost Cells

Figure: Global Array After Ghost Cell Update

122 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Ghost Cells
Advanced Topic

GA also provides a routine to update ghost cells in individual
directions (most useful when updates can be overlapped with
computation).

Fortran: logical function nga update ghosts dir(g a, dimension, direction, corner)

C: int NGA Update ghosts dir(int g a, int dimension, int direction, int corner)

dimension Coordinate direction is to be updated

(e.g. dimension=2 corresponds to y-axis in 2D or 3D system)

direction Updated side is in positive or negative direction?

flag Should corners on updated side be included?

123 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Ghost Cells
Advanced Topic

Figure: Equivalent Calls for 2D GA Update ghosts Call

124 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Ghost Cells
Advanced Topic

The values of local ghost cells can be accessed using the
following functions:

Fortran: subroutine nga access ghosts(g a, dims, index, ld)

C: void NGA Access ghosts(int g a, int dims[], void *index, int ld[])

dims Array of Local Dimensions Including Ghost Cells

index Index Corresponding to the Local Global Array Patch

ld Dimensions of the Local Array Patch including Ghost Cells

125 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Periodic Interfaces
Advanced Topic

Definition

One-sided Periodic Interfaces have been added to GA to
support computational fluid dynamics problems on
multi-dimensional grids .

1 They provide and index translation layer that allows put(),get() and

accumulate() operations to extend beyond the boundaries of the global

array

2 The references outside the boundaries are wrapped around the global array

like a torus

126 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Periodic Interfaces
Advanced Topic

Figure: Horizontal Boundary Wrapping with Periodic Interface
127 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Periodic Interfaces
Advanced Topic

Figure: The Global Array Patch [2 : 4,−1 : 3]

128 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Periodic Interfaces
Advanced Topic

To perform periodic operations, call the following functions:

Fortran: subroutine nga periodic get(g a, lo, hi, buf, ld)

C: void NGA Periodic get(int g a, int lo[], int hi[], void buf[], int ld[])

Fortran: subroutine nga periodic put(g a, lo, hi, buf, ld)

C: void NGA Periodic put(int g a, int lo[], int hi[], void buf[], int ld[])

Fortran: subroutine nga periodic acc(g a, lo, hi, buf, ld, alpha)

C: void NGA Periodic acc(int g a, int lo[], int hi[], void buf[], int ld[], void

*alpha)

lo Array of Starting Patch Indices

hi Array of Ending Patch Indices

buf Local Buffer to Send/Receive Data Values

ld Leading Dimensions for Buffer

alpha The Scaling Factor 129 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Non-blocking Operations
Advanced Topic

Definition

Improved performance can be obtained with non-blocking
communications

were the communication operation completes before the
data buffer is ready to be overwritten

By returning from the communication operation after the data
transfer has been initiated, overlapping of computation and
communication can be performed.

130 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Non-blocking Operations
Advanced Topic

Figure: Non-blocking Communication Example

131 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Non-blocking Operation
Advanced Topic

Notes:

1 GA non-blocking communications (get/put/accumulate) are

derived from the standard blocking interface by adding an extra

handle request argument .

2 The wait function completes a non-blocking operation locally

3 Waiting on a non-blocking put()/accumulate()

ensures the data was injected into network and the user buffer

is ready to be reused

4 Waiting on a non-blocking get()

ensures the data has arrived and the user buffer is ready to be

used

5 Unlike blocking communications, non-blocking communications
are not ordered with respect to the destination

If ordering is required, a fence operation can used to
confirm remote completion

132 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Non-blocking Operations
Advanced Topic

Non-blocking operations can be called with the following
routines:

Fortran Routines

subroutine nga nbput(g a, lo, hi, buf, ld,nbhandle)

subroutine nga nbget(g a, lo, hi, buf, ld,nbhandle)

subroutine nga nbacc(g a, lo, hi, buf, ld, alpha, nbhandle)

subroutine nga nbwait(nbhandle)

nbhandle Handle for Non-Blocking Request

133 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Non-blocking Operations
Advanced Topic

C Routines

void NGA NbPut(int g a, int lo[], int hi[], void buf[], int ld[], ga nbhdl t*

nbhandle)

void NGA NbGet(int g a, int lo[], int hi[], void buf[], int ld[], ga nbhdl t*

nbhandle)

void NGA NbAcc(int g a, int lo[], int hi[], void buf[], int ld[], void *alpha,

ga nbhdl t* nbhandle)

subroutine nga NbWait(ga nbhdl t* nbhandle)

nbhandle Handle for Non-Blocking Request

134 / 150

The Global
Arrays Toolkit

CSCS

Advanced
Topics

Ghost Cells

Periodic
Interfaces

Non-blocking
Operations

Non-blocking Operations
Advanced Topic

Non-Blocking GA Fortran Example

double precision buf1 (nmax , nmax)
double precision buf2 (nmax , nmax)

! Evaluate lo1 , hi1

call nga_nbaget (g_a , lo1 , hi1 , buf1 , ld1 , nb1)
ncount=1
do while (. . .)

if (mod (ncount , 2) . eq . 1) then

! Evaluate lo2 , hi2

call nga_nbaget (g_a , lo2 , hi2 , buf2 , ld2 , nb2)
call nga_nbwait (nb1)
! Do work with data in buf1

else

! Evaluate lo1 , hi1

call nga_nbaget (g_a , lo1 , hi1 , buf1 , ld1 , nb1)
call nga_nbwait (nb2)
! Do work with data in buf2

endif

ncount=ncount+1
end do

135 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Part X

Supplemental Information

136 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Message-Passing Communication

Message-passing requires cooperation on both sides

137 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
One-Sided Communication

Once the message is initiated on PE y the sending processor can

continue with computation. PE x is never involved in the

communication

One-sided communications can be implemented with shared-memory,

threads, network hardware, Remote Direct Memory Access (RDMA)

and vendor-specific mechanisms

Common one-sided communication libraries: ARMCI, SHMEM and

MPI-2

Return 138 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
ScaLAPACK Interface - Solving a Linear System using LU Factorisation

GA Interface

call ga_lu_solve (gA , gB)

instead of . . .

call pdgetrf (n , m , locaA , p , q , dA , ind , info)
call pdgetrs (trans , n , mb , locA , p , q , dA , dB , info)

Return

139 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Aggregate Remote Method Copy Interface (ARMCI)

A general, portable, efficient one-sided communication interface

ARMCI offers an extensive set of Remote Memory Access
(RMA) communication functionality utilising network interfaces
on clusters and supercomputers[2]:

1 data transfer operations optimised for contiguous and
noncontiguous (strided, scatter/gather, I/O vector) data
transfers

2 atomic operations

3 memory management and synchronisation

4 locks

GA’s primary communication interfaces combine the
ARMCI interfaces with a global-array index translation.

140 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Aggregate Remote Method Copy Interface . . . continued

Performance Notes:
1 On cluster connects, ARMCI achieves bandwidth close to

the underlying network protocols

Similarly, latency is comparable if the native platform
protocol supports an equivalent remote memory operation
(e.g. elan get() on Quadrics).

2 For systems that do not support a native remote get() the
latency can include the cost of interrupt processing that is
used by ARMCI to implement the get() operation.

3 Check www.emsl.pnl.gov/docs/parsoft/armci/performance.htm for
further details.

Return

141 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Data Distribution and Data Locality

1 GA can support the programmer in controlling data
distribution when creating global arrays:

You can allow GA to determine the array distribution
You can specify the decomposition of one array dimension
and allow GA to determine the others
You can specify the block size for all dimensions
You can specify an irregular distribution as a Cartesian
product of irregular distributions for each dimension

2 GA maintains locality information for all global arrays
which can be accessed via query functions to find:

the array data portion held by a given processor
which process owns a particular array element
block lists owned by each process for a given global array
section

Return

142 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Blocking and Non-Blocking Operations

Blocking Store Operations

There are two types of completion for store operations (local
and remote):

1 The blocking store operation completes after the
operation is completed locally i.e. the user buffer
containing the source data can be overwritten

2 The blocking store operation completes remotely after
either:

a fence operation
a barrier synchronisation

143 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Blocking and Non-Blocking Operations . . . continued

Ordered Blocking

1 Blocking loads/store operations are ordered only if they
target overlapping sections of a global array

2 Blocking loads/stores that target different array sections
complete arbitrarily

Non-Blocking Operations

1 Non-blocking load/store operations complete in arbitrary
order. Wait/Test operations can be used to order
completion of these operations, if required.

Return

144 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Memory Allocator (MA)

Local Memory Allocation

The Global Arrays Toolkit requires the Memory Allocator (MA) library,

which is a collection of routines for performing dynamic memory allocation

for C, Fortran and mixed-language applications. GA uses MA to provide all

its dynamically allocated local memory (global memory is allocated via

ARMCI using operating system shared memory operations) .

MA provides both stack and heap memory management operations

MA provides memory availability and utilisation information and

statistics

MA supports both C and Fortran data types

MA offers both debugging and verification mechanisms (memory

boundary guards)

Return

145 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Disk Resident Arrays (DRAs)

Data transfered between disk

and global memory using simple

read/write commands.

I/O operations have

nonblocking interface to allow

computation overlapping.

Whole or sections of global

arrays can be transferred (using

global indexing).

146 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Disk Resident Arrays (DRAs) . . . continued

Reshaping and transpose

operations allowed during the

transfer.

Disk arrays can be accessed by

arbitrary number of processors.

Distribution on the disk is

optimised for large data

transfer.

Hints provided by the user

allow improved performance for

specific I/O patterns.

147 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

Supplementary Information
Disk Resident Arrays (DRAs) . . . continued

Return

148 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

References I

[J. Nieplocha, R. Harrison, R. Littlefield, 1994]
Global Arrays: A portable shared memory model for
distributed memory computers
Proc. Supercomputing’94, 1994.

[J. Nieplocha, V. Tipparaju, M. Krishnan, and D. Panda,
2006]
High Performance Remote Memory Access Comunications:
The ARMCI Approach
International Journal of High Performance Computing and
Applications, Vol 20(2), 2006.

[Jack Dongarra et al., 2008]
MPI: A Message-Passing Interface Standard v1.3
Message Passing Interface Forum, 2008.

149 / 150

The Global
Arrays Toolkit

CSCS

Supplementary
Information

Communication
Issues

Third-Party
Extensions

ARMCI

Data Locality
and Distribution

Blocking and
Non-Blocking
Operations

The Memory
Allocator (MA)

Disk Resident
Arrays (DRAs)

References II

[J. Nieplocha et al.]
Global Arrays Toolkit Interface
http://www.emsl.pnl.gov/docs/global/userinterface.html

[Blackford, L. et al.]
ScaLAPACK Users’ Guide
Society for Industrial and Applied Mathematics, 1997

[Satish Balay et al.]
PETSc Web page
http://www.mcs.anl.gov/petsc, 2001

[J. Nieplocha et al.]
Disks Resident Arrays
http://www.emsl.pnl.gov/docs/parsoft/dra/disk.arrays.html

150 / 150

	Introduction
	Introduction
	Global Arrays Toolkit - A Definition
	Overview of Standard HPC Architectures
	Global Arrays
	The Global Arrays Toolkit

	GA Programming Basics
	GA Programming Basics
	GA Template
	GA Initialisation
	GA Termination
	GA Process Information
	GA Data Types
	GA Compilation/Execution
	Exercise 1

	Creating and Destroying Global Arrays
	Creating and Destroying Global Arrays
	Creating Global Arrays
	Destroying Global Arrays
	Exercise 2

	One-Sided Communications
	One-Sided Communications
	Introduction
	Put
	Get
	Atomic Accumulate
	Scatter/Gather

	Utility Operations
	Utility Operations
	Locality Information
	Printing
	Other Routines

	Collective Communications
	Collective Communications
	Introduction
	Initialisation
	Copying
	Array Patches
	Linear Algebra
	3rd Party Interfaces
	Synchronisation Control

	Inter-Process Synchronisation
	Inter-Process Synchronisation
	Introduction
	Lock and Mutex
	Fence
	Sync

	Processor Groups
	Processor Groups
	Introduction
	Creating Process Groups
	Assigning Process Groups
	Setting Default Process Group
	Process Group Utility Operations

	Advanced Topics
	Advanced Topics
	Ghost Cells
	Periodic Interfaces
	Non-blocking Operations

	Supplemental Information
	Supplementary Information
	Communication Issues
	Third-Party Extensions
	ARMCI
	Data Locality and Distribution
	Blocking and Non-Blocking Operations
	The Memory Allocator (MA)
	Disk Resident Arrays (DRAs)

