
The Global Arrays User Manual

Manojkumar Krishnan, Bruce Palmer, Abhinav Vishnu,

Sriram Krishnamoorthy, Je� Daily, Daniel Chavarria

November 12, 2010

1

This document is intended to be used with version 5.0 of Global Arrays

(Paci�c Northwest National Laboratory Technical Report Number
PNNL-13130)

DISCLAIMER This material was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States Gov-
ernment nor the United States Department of Energy, nor Battelle, nor any
of their employees, MAKES ANY WARRANTY, EXPRESS OR IMPLIED,
OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE
ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMA-
TION, APPARATUS, PRODUCT, SOFTWARE, OR PROCESS DISCLOSED,
OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY
OWNED RIGHTS.

ACKNOWLEDGMENT This software and its documentation were pro-
duced with United States Government support under Contract Number DE-
AC05-76RLO-1830 awarded by the United States Department of Energy. The
United States Government retains a paid-up non-exclusive, irrevocable world-
wide license to reproduce, prepare derivative works, perform publicly and display
publicly by or for the US Government, including the right to distribute to other
US Government contractors.

November, 2010

Contents

1 Introduction 6
1.1 Overview . 7
1.2 Basic Functionality . 7
1.3 Programming Model . 8
1.4 Application Guidelines . 9

1.4.1 When to use GA: . 9
1.4.2 When not to use GA . 10

2 Writing, Building and Running GA Programs 11
2.1 Platform and Library Dependencies 12

2.1.1 Supported Platforms . 12
2.1.2 Selection of the communication network for ARMCI . . . 13
2.1.3 Selection of the message-passing library 14
2.1.4 Dependencies on other software 15

2.2 Writing GA Programs . 15
2.3 Building GA . 16

2.3.1 Building and Running GA Test and Example Programs . 17
2.3.2 Con�gure Options which Take Arguments 17
2.3.3 BLAS and LAPACK . 18
2.3.4 ScaLAPACK . 18
2.3.5 GA C++ Bindings . 18
2.3.6 Disabling Fortran . 19
2.3.7 Python Bindings . 19
2.3.8 Writing and Building New GA Programs 20

2.4 Running GA Programs . 20
2.5 Building Intel Trace Analyzer (VAMPIR) Instrumented Global

Arrays . 22
2.5.1 Introduction . 22
2.5.2 New Functions Needed for the Instrumentation 22
2.5.3 Build Instructions . 23
2.5.4 Further Information . 23
2.5.5 Known Problems . 24

2

CONTENTS 3

3 Initialization and Termination 25
3.1 Message Passing . 26
3.2 Memory Allocation . 27

3.2.1 Determining the Values of MA Stack and Heap Size . . . 28
3.3 GA Initialization . 28

3.3.1 Limiting Memory Usage by Global Arrays 29
3.4 Termination . 30
3.5 Creating Arrays - I . 30

3.5.1 Creating Arrays with Ghost Cells 32
3.6 Creating Arrays - II . 34
3.7 Destroying Arrays . 36

4 One-sided Communication Operations 37
4.1 Put/Get . 38
4.2 Accumulate and Read-and-increment 39
4.3 Scatter/Gather . 40
4.4 Periodic Interfaces . 42
4.5 Non-blocking operations . 47

5 Interprocess Synchronization 50
5.1 Lock and Mutex . 51
5.2 Fence . 52
5.3 Sync . 53

6 Collective Array Operations 54
6.1 Basic Array Operations . 55

6.1.1 Whole Arrays . 55
6.1.2 Patches . 58

6.2 Linear Algebra . 60
6.2.1 Whole Arrays . 60
6.2.2 Patches . 62
6.2.3 Element-wise operations 64

6.3 Interfaces to Third Party Software Packages 70
6.3.1 Scalapack . 70
6.3.2 PeIGS . 71
6.3.3 Interoperability with Others 72

6.4 Synchronization Control in Collective Operations 72

7 Utility Operations 74
7.1 Locality Information . 75

7.1.1 Process Information . 77
7.1.2 Cluster Information . 78

7.2 Memory Availability . 79
7.3 Message-Passing Wrappers to Reduce/Broadcast Operations . . 80
7.4 Others . 81

7.4.1 Inquire . 81

CONTENTS 4

7.4.2 Print . 82
7.4.3 Miscellaneous . 83

8 GA++: C++ Bindings for Global Arrays 84
8.1 Overview . 85
8.2 GA++ Classes . 85
8.3 Initialization and Termination: 85
8.4 GAServices . 86
8.5 Global Array . 86

9 Mirrored Arrays 87
9.1 Overview . 88
9.2 Mirrored Array Operations . 88

10 Processor Groups 91
10.1 Overview . 92
10.2 Creating New Groups . 93
10.3 Setting the Default Group . 94
10.4 Inquiry functions . 94
10.5 Collective operations on groups 94

11 Sparse Data Operations 96
11.1 Sparse Matrix-Vector Multiply Example: 98

12 Restricted Arrays 105
12.1 Overview . 106
12.2 Restricted Arrays Operations . 106

13 Appendix A - List of C Functions 109

14 Appendix B - List of Fortran Functions 110

15 Appendix C - Global Arrays on Older Systems 111
15.1 Platform and Library Dependencies 112
15.2 Supported Platforms . 112
15.3 Selection of the communication network for ARMCI 114
15.4 Selection of the message-passing library 115
15.5 Dependencies on other software 117
15.6 Writing GA Programs . 117
15.7 Building GA . 118

15.7.1 Unix Environment . 119
15.7.2 Windows NT . 121
15.7.3 Writing and building new GA programs 122

15.8 Running GA Programs . 122
15.9 Building Intel Trace Analyzer (VAMPIR) Instrumented Global

Arrays . 124
15.9.1 Introduction . 124

CONTENTS 5

15.9.2 New Functions Needed for the Instrumentation 124
15.9.3 Build Instructions . 125
15.9.4 Further Information . 125
15.9.5 Known Problems . 126

Chapter 1

Introduction

6

CHAPTER 1. INTRODUCTION 7

1.1 Overview

The Global Arrays (GA) toolkit provides a shared memory style programming
environment in the context of distributed array data structures (called "global
arrays"). From the user perspective, a global array can be used as if it was
stored in shared memory. All details of the data distribution, addressing, and
data access are encapsulated in the global array objects. Information about the
actual data distribution and locality can be easily obtained and taken advantage
of whenever data locality is important. The primary target architectures for
which GA was developed are massively-parallel distributed-memory and scalable
shared-memory systems.

GA divides logically shared data structures into "local" and "remote" por-
tions. It recognizes variable data transfer costs required to access the data
depending on the proximity attributes. A local portion of the shared memory
is assumed to be faster to access and the remainder (remote portion) is consid-
ered slower to access. These di�erences do not hinder the ease-of-use since the
library provides uniform access mechanisms for all the shared data regardless
where the referenced data is located. In addition, any processes can access a
local portion of the shared data directly/in-place like any other data in process
local memory. Access to other portions of the shared data must be done through
the GA library calls.

GA was designed to complement rather than substitute the message-passing
model, and it allows the user to combine shared-memory and message-passing
styles of programming in the same program. GA inherits an execution environ-
ment from a message-passing library (w.r.t. processes, �le descriptors etc.) that
started the parallel program.

GA is implemented as a library with C and Fortran-77 bindings, and there
have been also a Python and C++ interfaces (included starting with the release
3.2) developed. Therefore, explicit library calls are required to use the GA
model in a parallel C/Fortran program.

A disk extension of the Global Array library is supported by its companion
library called Disk Resident Arrays (DRA). DRA maintains array objects in
secondary storage and allows transfer of data to/from global arrays.

1.2 Basic Functionality

The basic shared memory operations supported include get, put, scatter and
gather. They are complemented by atomic read-and-increment, accumulate
(reduction operation that combines data in local memory with data in the shared
memory location), and lock operations. However, these operations can only be
used to access data in global arrays rather than arbitrary memory locations.
At least one global array has to be created before data transfer operations can
be used. These GA operations are truly one-sided/unilateral and will complete
regardless of actions taken by the remote process(es) that own(s) the referenced
data. In particular, GA does not o�er or rely on a polling operation or require

CHAPTER 1. INTRODUCTION 8

inserting any other GA library calls to assure communication progress on the
remote side.

A programmer in the GA program has a full control over the distribution
of global arrays. Both regular and irregular distributions are supported, see
Section 3 for details.

The GA data transfer operations use an array index-based interface rather
than addresses of the shared data. Unlike other systems based on global address
space that support remote memory (put/get) operations, GA does not require
the user to specify the target process/es where the referenced shared data resides
� it simply provides a global view of the data structures. The higher level
array oriented API (application programming interface) makes GA easier to
use, at the same time without compromising data locality control. The library
internally performs global array index-to-address translation and then transfers
data between appropriate processes. If necessary, the programmer is always
able to inquire:

• where an an element or array section is located, and

• which process or processes own data in the speci�ed array section.

The GA toolkit supports four data types in Fortran: integer, real, double preci-
sion, and double complex. In the C interface, int, long, �oat, double and struct
double complex are available. Underneath, the library represents the data using
C datatypes. For the Fortran users, it means that some arrays created in C for
which there is no appropriate datatype mapping to Fortran (for example on the
Cray T3E Fortran real is not implemented whereas C �oat is) might not be
accessible. In all the other cases, the dataype representation is transparent.

The supported array dimensions range from one to seven. This limit follows
the Fortran convention. The library can be recon�gured to support more than
7-dimensions but only through the C interface.

1.3 Programming Model

The Global Arrays library supports two programming styles: task-parallel and
data-parallel. The GA task-parallel model of computations is based on the ex-
plicit remote memory copy: The remote portion of shared data has to be copied
into the local memory area of a process before it can be used in computations
by that process. Of course, the "local" portion of shared data can always be
accessed directly thus avoiding the memory copy.

CHAPTER 1. INTRODUCTION 9

The data distribution and locality control are provided to the programmer.
The data locality information for the shared data is also available. The li-
brary o�ers a set of operations for management of its data structures, one-sided
data transfer operations, and supportive operations for data locality control
and queries. The GA shared memory consistency model is a result of a compro-
mise between the ease of use and a portable performance. The load and store
operations are guaranteed to be ordered with respect to each other only if
they target overlapping memory locations. The store operations (put, scatter)
and accumulate complete locally before returning i.e., the data in the user local
bu�er has been copied out but not necessarily completed at the remote side.
The memory consistency is only guaranteed for:

• multiple read operations (as the data does not change),

• multiple accumulate operations (as addition is commutative), and

• multiple disjoint put operations (as there is only one writer for each ele-
ment).

The application can manage consistency of its data structures in other cases by
using lock, barrier, and fence operations available in the library.

The data-parallel model is supported by a set of collective functions that
operate on global arrays or their portions. Underneath, if any interprocessor
communication is required, the library uses remote memory copy (most often)
or collective message-passing operations.

1.4 Application Guidelines

These are some guidelines regarding suitability of the GA for di�erent types of
applications.

1.4.1 When to use GA:

Algorithmic Considerations

CHAPTER 1. INTRODUCTION 10

• applications with dynamic and irregular communication patterns

• for calculations driven by dynamic load balancing

• need 1-sided access to shared data structures

• need high-level operations on distributed arrays and/or for out-of-core
array-based algorithms (GA + DRA)

Useability Considerations

• data locality must be explicitly available

• when coding in message passing becomes too complicated

• when portable performance is important

• need object orientation without the overhead of C++

1.4.2 When not to use GA

Algorithmic Considerations

• for systolic, or nearest neighbor communications with regular communi-
cation patterns

• when synchronization associated with cooperative point-to-point message
passing is needed (e.g., Cholesky factorization in Scalapack)

Usability Considerations

• when interprocedural analysis and compiler parallelization is more e�ec-
tive

• a parallel language support is su�cient and robust compilers available

Chapter 2

Writing, Building and

Running GA Programs

11

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 12

The GA build process has been improved by using the GNU autotools (au-
toconf, automake, and libtool) as well as by combining all of the historic GA
libraries (linalg, armci, ma, pario) into a single, monolithic libga. Details
on con�guring GA can be found by running �configure �help". The follow-
ing sections explain some of the con�gure options a typical installation might
require for con�guring and building libga, its test programs, and how packages
can link to and use GA.

The web page www.emsl.pnl.gov/docs/global/support.html contains in-
formation about using GA on di�erent platforms. Please refer to this page
frequently for most recent updates and platform information. Information on
building GA on older systems is available in Appendix C, Global Arrays on
Older Systems 15.

2.1 Platform and Library Dependencies

The following platforms are supported by Global Arrays.

2.1.1 Supported Platforms

• BlueGene/L

• BlueGene/P

• Cray XT

• Cray XE

• Fujitsu

• IBM SP

• Linux Cluster with Ethernet, Myrinet, In�niband, or Quadrics

• MAC

• NEC

• SGI Altix

• Solaris

• Windows (Cygwin)

For most of the platforms, there are two versions available: 32-bit and 64-bit.
64-bit is preferred and will automatically be selected by the con�gure script if
the size of the C datatype void* is 8 bytes.

To aid the development of fully portable applications, in 64-bit mode the
Fortran integer datatype is 64-bits. It is motivated by 1) the need of applications
to use very large data structures, and 2) Fortran INTEGER*8 not being fully

www.emsl.pnl.gov/docs/global/support.html

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 13

portable. The 64-bit representation of integer datatype is accomplished by using
the appropriate Fortran compiler �ag. The con�gure script will determine this
�ag as needed, but one can always override the con�gure script by supplying
the environment variable FFLAG_INT e.g. FFLAG_INT=-i8.

Note: con�gure almost always does the right thing, so overriding this par-
ticular option is rarely needed. The best way to enforce the integer size of your
choosing is to use the con�gure options --enable-i4 or --enable-i8. These
options will force the integer size to be 4 or 8 bytes in size, respectively.

Because of limited interest in heterogeneous computing among known us GA
users, the Global Arrays library still does not support heterogeneous platforms.
This capability can be added if required by new applications.

2.1.2 Selection of the communication network for ARMCI

Some cluster installations can be equipped with a high performance network
which o�er instead, or in addition to, TCP/IP some special communication
protocol, for example GM on Myrinet network. To achieve high performance in
Global Arrays, ARMCI must be built to use these protocols in its implemen-
tation of one-sided communication. Starting with GA 5.0, this is accomplished
by passing an option to the con�gure script.

In addition, it might be necessary to provide a location for the header �les
and library path corresponding to the location of software supporting the ap-
propriate protocol API.

Our ability to automatically locate the required headers and libraries is
currently inadequate. Therefore, you will likely need to specify the optional
ARG pointing to the necessary directories and/or libraries. Sockets is the default
ARMCI network if nothing else is speci�ed to con�gure. Note that the optional
argument ARG takes a quoted string of any CPPFLAGS, LDFLAGS, or LIBS
necessary for locating the headers and libraries of the given ARMCI network.
On many systems it is simply necessary to specify the selected network:

./configure --with-openib

On others, you may need to specify the path to the network's installation if it is
in a non-default location. The following will add -I/path/to/portals/install/include
and -L/path/to/portals/install/lib to the CPPFLAGS and LDFLAGS if those
directories are found to exist:

./configure --with-portals=�/path/to/portals/install�

See section 2.3.1 for details of what you can pass as the quoted string to con�gure
options.

http://www.emsl.pnl.gov/docs/parsoft/armci

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 14

Network Protocol Name Con�gure Option

IBM BG/L BGML �with-bgml
Cray shmem Cray shmem �with-cray-shmem
IBM BG/P Deep Computing Message Framework �with-dcmf
IBM LAPI LAPI �with-lapi

N/A MPI Spawn - MPI-2 dynamic process management �with-mpi-spawn
In�niband OpenIB �with-openib
Cray XT Portals �with-portals
Ethernet TCP/IP �with-sockets (the

default, so you
don't need to
specify this)

2.1.3 Selection of the message-passing library

As explained in Section 3, GA works with either MPI or TCGMSG message-
passing libraries. That means GA applications can use either of these interfaces.
Selection of the message-passing library takes place when GA is con�gured.
Since the TCGMSG library is small and compiles fast, it is included with the
GA distribution package but as of GA 5.0 it is no longer built by default. For
GA 5.0, MPI is the default message-passing library. There are three possible
con�gurations for running GA with the message-passing libraries:

1. GA with MPI (recommended): directly with MPI. In this mode, GA pro-
gram should contain MPI initialization calls. Example: ./conifigure

2. GA with TCGMSG-MPI (MPI and TCGMSG emulation library): TCGMSG-
MPI implements functionality of TCGMSG using MPI. In this mode, the
message passing library can be initialized using either TCGMSG PBE-
GIN(F) or MPI_Init. Example: ./configure --with-mpi --with-tcgmsg

3. GA with TCGMSG: directly with TCGMSG. In this mode, GA program
should contain TCGMSG initialization calls. Example: ./configure

--with-tcgmsg

For the MPI versions (1 and 2 above), the --with-mpi con�gure option can
take parameters. If no parameters are speci�ed, con�gure will search for the
MPI compilers. Using the MPI compilers is the recommended way to build GA.
If the MPI compilers are not found, con�gure will exit with an error. The con-
�gure script will attempt to determine the underlying Fortran 77, C, and C++
compilers wrapped by the MPI compilers. This is necessary for other con�gure
tests such as determining compiler-speci�c optimization �ags or determining the
Fortran 77 libraries needed when linking using the C++ linker.

If an argument is speci�ed to --with-mpi, then con�gure will no longer use
the MPI compilers. Instead, con�gure will attempt to located the MPI headers
and libraries. The locations of the headers and the locations and names of the
one or more MPI libraries can di�er wildly. The argument to �with-mpi can

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 15

be a quoted string of any install paths, include paths, library paths, and/or
libraries required for compiling and linking MPI programs. See section 2.3.1 for
details of the possible arguments.

2.1.4 Dependencies on other software

In addition to the message-passing library, GA requires (internally):

• MA (Memory Allocator), a library for managment of local memory;

• ARMCI, a one-sided communication library that GA uses as its run-time
system;

GA optionally can use external:

• BLAS library is required for the eigensolver and ga_dgemm (a subset is
included with GA, which is built into libga.a);

• LAPACK library is required for the eigensolver (a subset is included with
GA, which is built into libga.a);

GA may also depend on other software depending on the functions being used.

• GA eigensolver, ga_diag, is a wrapper for the eigensolver from the PEIGS
library; (Please contact George Fannabout PEIGS)

• SCALAPACK, PBBLAS, and BLACS libraries are required for ga_lu_solve,
ga_cholesky, ga_llt_solve, ga_spd_invert, ga_solve. If these libraries are
not installed, the named operations will not be available.

2.2 Writing GA Programs

C programs that use Global Arrays should include �les `global.h', 'ga.h', `macde-
cls.h'. Fortran programs should include the �les `mafdecls.fh', `global.fh'. For-
tran source must be preprocessed as a part of compilation.

The GA program should look like:

• When GA runs with MPI

Fortran C

call mpi_init(..) MPI_Init(..) ! start MPI

call ga_initialize() GA_Initialize() ! start global arrays

status = ma_init(..) MA_Init(..) ! start memory allocator

.... do work do work

call ga_terminate() GA_Terminate() ! tidy up global arrays call

mpi_finalize() MPI_Finalize() ! tidy up MPI

stop ! exit program

• When GA runs with TCGMSG or TCGMSG-MPI

http://www.emsl.pnl.gov/docs/parsoft/ma/MAapi.html
http://www.emsl.pnl.gov/docs/parsoft/armci
mailto:fanngi@ornl.gov

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 16

Fortran C

call pbeginf() PBEGIN_(..) ! start TCGMSG

call ga_initialize() GA_Initialize() ! start global arrays

status = ma_init(..) MA_Init(..) ! start memory allocator

.... do work do work

call ga_terminate() GA_Terminate() ! tidy up global arrays

call pend() PEND_() ! tidy up tcgmsg

stop ! exit program

The ma_init call looks like :

status = ma_init(type, stack_size, heap_size)

and it basically just goes to the OS and gets stack_size+heap_size elements of
size type. The amount of memory MA allocates need to be su�cient for storing
global arrays on some platforms. Please refer to section 3.2 for the details and
information on more advanced usage of MA in GA programs.

MA is optional for C programs. You can replace GA's internal MA memory
handling with malloc() and free() by using the function GA_Register_stack_memory().

#include <ga.h>

#include <stdlib.h>

void* replace_malloc(size_t bytes, int align, char *name)

{

return malloc(bytes);

}

void replace_free(void *ptr)

{

free(ptr);

}

void replace_ma()

{

GA_Register_stack_memory(replace_malloc, replace_free);

}

2.3 Building GA

GNU Autotools (autoconf, automake, and libtool) are used to help build the
GA library and example programs. GA follows the usual convention of:

./configure; make; make install

Before GA 5.0 the user was required to set a TARGET environment variable.
This is no longer required � the con�gure script will determine the TARGET
for the user. The con�gure script will also search for appropriate Fortran 77, C,
and C++ compilers. To override the compilers, set the F77, CC, and/or CXX
environment variables or specify them to con�gure:

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 17

./configure CC=gcc F77=ifort CFLAGS=�-O2 -g -Wall"

For the complete list of environment variables which con�gure recognizes, see
the output of running:

./configure --help.

2.3.1 Building and Running GA Test and Example Pro-

grams

The GA distribution comes with a number of test and example programs lo-
cated in ./global/testing and ./global/examples, respectively. To build these
programs, after running con�gure and make, run the additional make target:

make checkprogs

To run the GA test suite, you must tell the make program how to run parallel
programs. The following assumes either an interactive session on a queued
system or a workstation:

make check MPIEXEC=�mpirun -np 4�

Of course, replace the value of MPIEXEC to the appropriate command for the
MPI implementation used to build GA. The test suite has not been tested with
the TCGMSG message-passing library's parallel.x invoker.

2.3.2 Con�gure Options which Take Arguments

Certain con�gure options take arguments which help the con�gure script locate
the headers and libraries necessary for the particular software. For example,
when specifying the ARMCI network (see section 2.1.2), the location of the
MPI installation (see section 2.1.3), or specifying the location of other external
software such as BLAS, LAPACK, or ScaLAPACK.

You can put almost anything into the quoted argument to these con�gure
options. For example, -I*, -L*, -l*, -Wl*, -WL*, *.a, *.so where the
asterisk represents the usual arguments to those compiler and linker �ags or
paths to static or shared libraries. Here are some sample MPI uses to illustrate
our point:

--with-mpi=�/usr/local�

--with-mpi=�-I/usr/local/include �L/usr/local/lib -lmpi"

--with-mpi=�-lmpichf90 -lmpich�

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 18

2.3.3 BLAS and LAPACK

The GA distribution contains a subset of the BLAS and LAPACK routines
necessary for successfully linking GA programs. However, those routines are
not optimized. If optimized BLAS and LAPACK routines are available on your
system, we recommend using them. The con�gure script will automatically
attempt to locate external BLAS and LAPACK libraries.

Correctly determining the size of the Fortran INTEGER used when com-
piling external BLAS and LAPACK libraries is not automatic. Even on 64-bit
platforms, external BLAS libraries are often compiled using 4-byte Fortran IN-
TEGERs. The GA interface to the BLAS and LAPACK routines must match
the Fortran INTEGER size used in the external BLAS and LAPACK routines.
There are three options to con�gure:

• --with-blas[=ARG] is the default and will attempt to detect the size of
the INTEGER, but if it fails (and it often will since this is no easy task),
it will assume 4-byte INTEGERS. Automatic detection of the INTEGER
size may improve in the future.

• --with-blas4[=ARG] assumes 4-byte INTEGERs

• --with-blas8[=ARG] assumes 8-byte INTEGERs

If LAPACK is in a separate library, you may need to specify --with-lapack=ARG
where ARG is the path to the LAPACK library. See section 2.3.1 for details.

2.3.4 ScaLAPACK

GA interface routines to ScaLAPACK are only available when GA is built with
MPI and ScaLAPACK. Before building GA, the user is required to con�gure
�with-scalapack and pass the location of ScaLAPACK & Co. libraries passed
as arguments to those con�gure options. See section 2.3.2 (Con�gure Options
which Take Arguments) for details.

2.3.5 GA C++ Bindings

The con�gure script automatically determines the Fortran 77 libraries required
for linking a C++ application and places them in the FLIBS variable within the
generated Make�le. Building the C++ bindings is then as simple as specifying:

./configure --enable-cxx

Running make will then link the libga++.a library in addition to the libga.a
library. Both are then required for linking C++ GA applications, specifying
libga++.a �rst and then libga.a (typically as -lga++ -lga).

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 19

2.3.6 Disabling Fortran

Fortran sources have typically been used by the GA and ARMCI distributions.
For GA 5.0 and beyond, Fortran sources have been deprecated in the ARMCI
distribution and are still used by default in the GA source. Therefore, ARMCI
is free from Fortran dependencies while GA is not. The GA dependencies can
be removed by specifying

./configure --disable-f77

Note that disabling Fortran 77 in GA is not well tested and doing so will also
likely disable the use of external Fortran 77 libraries such as Fortran-based BLAS
or ScaLAPACK. This also disables the use of the GA library in Fortran applica-
tions since the MA sources will no longer be compiled with Fortran 77 support.
Use this option with care and only if developing C and/or C++ applications
exclusively.

2.3.7 Python Bindings

GA 5.0 releases with Python bindings which were developed using the Cython
package (http://www.cython.org/). At a minimum, GA must be con�gured
with shared library support (which is disabled by default.) The con�gure script
will automatically search for a python interpreter in the PATH environment
variable, so make sure the appropriate Python interpreter can be found before
con�guring. For example:

./configure --enable-shared

should be all that is required to enable Python bindings. The Python bindings
are not installed by default. You should run the following:

make python target

in order to build and install the Python bindings. The python make target
depends on the install target (i.e. �make install�) and will pass the libga.so and
ga.h library and header locations to the python setup.py invocation. Optionally,
you can navigate to the python source directory and run:

python setup.py build_ext

or

python setup.py build_ext �inplace

to build the python bindings in a more manual way. The �make python� target
is not well tested since specifying dependent libraries can be a di�cult task.

If GA was built with external BLAS and LAPACK, those libraries must be
speci�ed when linking the Python shared library. Currently, users must edit the

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 20

setup.py script within the python source directory in order to add these libraries
to the standard distutils invocation of the linker. The BLAS and LAPACK
libraries on OSX are particularly di�cult to �nd, so this is done automatically
for the user since the con�gure script will detect the vecLib framework on OSX
automatically. Unforunately, at this time bulding the Python bindings is often
a manual process but those �uent in Python and Python's distutils should
have few problems editing the setup.py script.

2.3.8 Writing and Building New GA Programs

As of GA 5.0, the ability to place small single-�le test programs into the
global/testing directory of the distribution is no longer supported. Instead,
you must install the GA headers and libraries using the �make install� target.
This will install the GA headers and libraries to the location speci�ed by the
�pre�x con�gure option. If not speci�ed, the default is /usr/local/include
and /usr/local/lib. For our testing purposes, we often install GA into the
same location as the build. Recall, GA can be con�gured from a separate build
directory, keeping source and build trees separate. For example, from the top-
level GA source distribution:

mkdir bld

cd bld

../configure --prefix=`pwd`

make

make install

will con�gure, build, and install the GA headers and library into the separate
build directory �bld�. More speci�cally, you would �nd the GA library libga in
./bld/lib and the GA headers in ./bld/include. For packages using GA, you
need to provide appropriate compiler and linker �ags to indicate the locations
of the GA header �les and libraries.

2.4 Running GA Programs

Assume the GA program app.x had already been built. To run it,
Running on shared memory systems and clusters: (i.e., network of

workstations/linux clusters)
If the app.x is built based on MPI, run the program the same way as any

other MPI programs.
Example: to run on four processes on clusters, use

mpirun -np 4 app.x

Example: If you are using MPICH (or MPICH-like Implementations), and
mpirun requires a machine�le or host�le, then run the GA program same as

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 21

any other MPI programs. The only change required is to make sure the host-
names are speci�ed in a consecutive manner in the machine�le. Not doing this
will prevent SMP optimizations and would lead to poor resource utilization.

mpirun -np 4 -machinefile machines.txt app.x

Contents of machines.txt : (Let us say we have two 2-way SMP nodes (host1 and
host2, and correct formats for a 4-processor machine�le is shown in the table
below).

Correct Correct Incorrect

host1
host1
host2
host2

host2
host2
host1
host1

host1
host2
host1 (This is
wrong, the same
hosts should be
speci�ed together)
host2

If app.x is built based on TCGMSG (not including, Fujitsu, Cray J90, and
Windows, because there are no native ports of TCGMSG), to execute the pro-
gram on Unix workstations/servers, one should use the 'parallel' program (built
in tcgmsg/ipcv4.0). After building the application, a �le called 'app.x.p' would
also be generated (If there is not such a �le, make it:

make app.x.p

This �le can be edited to specify how many processors and tasks to use, and
how to load the executables. Make sure that 'parallel' is accessible (you might
copy it into your 'bin' directory). To execute, type:

parallel app.x

1. On MPPs, such as Cray XT3/XT4, or IMB SPs, use the appropriate
system command to specify the number of processors, load and run the
programs. Example:

• to run on IBM SP, run as any other parallel programs (i.e., using
poe)

• to run on Cray XT3/XT4, use yod.

2. On Microsoft NT, there is no support for TCGMSG, which means you can
only build your application based on MPI. Run the application program
the same way as any other MPI programs. For, WMPI you need to create
the .pg �le. Example:

R:\nt\g\global\testing> start /b test.exe

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 22

2.5 Building Intel Trace Analyzer (VAMPIR) In-
strumented Global Arrays

2.5.1 Introduction

The following topics are covered in this section.

• New functions needed for the instrumentation

• Build instructions

• Further information

• Known problems

2.5.2 New Functions Needed for the Instrumentation

• To instrument the GA three C-functions are de�ned (see g/ga_vt.c):

• vampir_symdef is de�ned to associate integer identi�ers with user de�ned
states and activities. It handles any errors that might occur.

• vampir_begin is de�ned to register entering a user de�ned state. It uses
a global counter called <vampirtrace_level> to avoid tracing the use of
libraries within libraries.

• vampir_end is de�ned to register leaving a user de�ned state.

The interfaces of these functions are de�ned below.

void vampir_symdef (int id, char *state, char *activity,

char *file, int line);

void vampir_begin (int id, char *file, int line);

void vampir_end (int id, char *file, int line);

In addition to these functions two functions are de�ned to initialise and �nalise
MPI when needed. The use of MPI is required because Vampirtrace uses it
internally. The functions are

void vampir_init (int argc, char **argv, char *file,

int line);

void vampir_finalize (char *file, int line);

If the cpp �ag -DMPI is provided then these two functions will turn into null
functions. In that case the use of MPI within the GAs will ensure that Vampir-
trace will be initialised properly.

The values for <�le> and <line> are substitute with __FILE__ and
__LINE__ macros. On compilation the C-preprocessor replaces these macros

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 23

with the actual �le name and line number. These values are used to generate
error messages if needed. These functions are de�ned in the �le g/ga_vt.h.

For each of the instrumented libraries an initialisation routine must be de-
�ned that sets the state and activity tables up.

• tcgmsg : tcgmsg_vampir_init in g/tcgmsg/tcgmsg_vampir.c. This rou-
tine is called from within PBEGINF.

• tcgmsg-mpi : tcgmsg_vampir_init in g/tcgmsg-mpi/tcgmsg_vampir.c called
from ALT_PBEGIN_ in misc.c.

• armci : armci_vampir_init in g/armci/src/armci_vampir.c called from
ARMCI_Init in armci.c.

• global : ga_vampir_init in g/global/src/ga_vampir.c called from ga_initialize_
and ga_initialize_ltd_ in global.armci.c

2.5.3 Build Instructions

To build GA with Vampir (now called, Intel Trace Analyzer) set the environment
variable GA_USE_VAMPIR.

e.g., setenv GA_USE_VAMPIR y

to compile the GAs including all the Vampirtrace instrumentation. Further
environment variables that are required are

LIBVT : The name of the library, normally -lVT which

is the default.

VT_LIB : The path to the library, -L<library-path>

e.g. setenv VT_LIB /usr/local/vampir/lib

VT_INCLUDE: The path to the include file VT.h,

-I<include-path>. e.g. setenv VT_INCLUDE

/usr/local/vampir/include

On some platforms it may be necessary to set LIBMPI to -lpmpi to load the
MPI pro�le interfaces that vampirtrace needs.

There are no defaults for VT_PATH and VT_INCLUDE. Beyond this point
simply follow the GA make instructions.

Note: that libVT.a should be loaded before mpi or pmpi otherwise the
vampirtracing will be ignored.

2.5.4 Further Information

More information on using Intel Trace Analyzer can be found on the Intel web-
site at

http://www.intel.com/software/products/cluster/tanalyzer/
From this location Vampir and Vampirtrace can be downloaded for various

platforms including validation licenses if needed.

http://www.intel.com/software/products/cluster/tanalyzer/

CHAPTER 2. WRITING, BUILDING AND RUNNING GA PROGRAMS 24

2.5.5 Known Problems

• Vampirtrace and LAM-MPI clash

In an attempt to produce traces while running with LAM-MPI the program
would always abort in MPI_Init due to a segmentation violation. The Pallas
website does not mention LAM-MPI at all, but does explicitly state that Vam-
pirtrace does work with MPICH. Indeed the latter has been con�rmed in tests.
Therefore it is not recommended to use the Vampirtrace instrumentation with
LAM-MPI.

Chapter 3

Initialization and Termination

25

CHAPTER 3. INITIALIZATION AND TERMINATION 26

For historical reasons (the 2-dimensional interface was developed �rst), many
operations have two interfaces, one for two dimensional arrays and the other for
arbitrary dimensional (one- to seven- dimensional, to be more accurate) arrays.
The latter can de�nitely handle two dimensional arrays as well. The supported
data types are integer,double precision, and double complex. Global Arrays
provide C and Fortran interfaces in the same (mixed-language) program to
the same array objects. The underlying data layout is based on the Fortran
convention.

GA programs require message-passing and Memory Allocator (MA) libraries
to work. Global Arrays is an extension to the message-passing interface. GA
internally does not allocate local memory from the operating system - all dy-
namically allocated local memory comes from MA. We will describe the details
of memory allocation later in this section.

3.1 Message Passing

The �rst version of Global Arrays was released in 1994 before robust MPI im-
plementations became available. At that time, GA worked only with TCGMSG,
a message-passing library that one of the GA authors (Robert Harrison) had
developed before. In 1995, support for MPI was added. At the present time,
the GA distribution still includes the TCGMSG library for backward compati-
bility purposes, and because it is small, fast to comple, and provides a minimal
message-passing support required by GA programs. The user can enable the
MPI-compatible version of GA by de�ning USE_MPI environment variable be-
fore compiling the GA toolkit. On systems where vendors provide MPI with
interoperable C and Fortran interfaces, there is no advantage in compiling or
using TCGMSG.

The GA toolkit needs the following functionality from any message-passing
library it runs with:

• initialization and termination of processes in an SPMD (single-program-
multiple-data) program,

• synchronization,

• functions that return number of processes and calling process id,

• broadcast,

• reduction operation for integer and double datatypes, and

• a function to abort the running parallel job in case of an error.

The message-passing library has to be initialized before the GA library and
terminated after the GA library is terminated.

GA provides two functions ga_nnodesand ga_nodeidthat return the number
of processes and the calling process id in a parallel program. Starting with
release 3.0, these functions return the same values as their message-passing

CHAPTER 3. INITIALIZATION AND TERMINATION 27

counterparts. In earlier releases of GA on clusters of workstations, the mapping
between GA and message-passing process ids were nontrivial. In these cases, the
ga_list_nodeidfunction (now obsolete) was used to describe the actual mapping.

Although message-passing libraries o�er their own barrier (global synchro-
nization) function, this operation does not wait for completion of the outstand-
ing GA communication operations. The GA toolkit o�ers a ga_syncoperation
that can be used for synchronization, and it has the desired e�ect of waiting for
all the outstanding GA operations to complete.

3.2 Memory Allocation

GA uses a very limited amount of statically allocated memory to maintain
its data structures and state. Most of the memory is allocated dynamically as
needed, primarily to store data in newly allocated global arrays or as temporary
bu�ers internally used in some operations, and deallocated when the operation
completes.

There are two �avors of dynamically allocated memory in GA: shared mem-
ory and local memory. Shared memory is a special type of memory allocated
from the operating system (UNIX and Windows) that can be shared between
di�erent user processes (MPI tasks). A process that attaches to a shared mem-
ory segment can access it as if it was local memory. All the data in shared
memory is directly visible to every process that attaches to that segment. On
shared memory systems and clusters of SMP (symmetritc multiprocessor) nodes,
shared memory is used to store global array data and is allocated by the Global
Arrays run-time system called ARMCI. ARMCI uses shared memory to op-
timize performance and avoid explicit interprocessor communication within a
single shared memory system or an SMP node. ARMCI allocates shared mem-
ory from the operating system in large segments and then manages memory
in each segment in response to the GA allocation and deallocation calls. Each
segment can hold data in many small global arrays. ARMCI does not return
shared memory segments to the operating system until the program terminates
(calls ga_terminate).

On systems that do not o�er shared-memory capabilities or when a program
is executed in a serial mode, GA uses local memory to store data in global
arrays.

All of the dynamically allocated local memory in GA comes from its com-
panion library, the Memory Allocator (MA) library. MA allocates and manages
local memory using stack and heap disciplines. Any bu�er allocated and deal-
located by a GA operation that needs temporary bu�er space comes from the
MA stack. Memory to store data in global arrays comes fromheap. MA has
additional features useful for program debugging such as:

• left and right guards: they are stamps that detect if a memory segment
was overwritten by the application,

• named memory segments, and

CHAPTER 3. INITIALIZATION AND TERMINATION 28

• memory usage statistics for the entire program.

Explicit use of MA by the application to manage its non-GA local data struc-
tures is not necessary but encouraged. Because MA is used implicitly by GA,
it has to be initialized before the �rst global array is allocated. The MA_init
function requires users to specify memory for heap and stack. This is because
MA:

• allocates from the operating system only one segment equal in size to the
sum of heap and stack,

• manages both allocation schemes using memory coming from opposite
ends of the same segment, and

• the boundary between free stack and heap memory is dynamic.

It is not important what the stack and heap size argument values are as long as
the aggregate memory consumption by a program does not exceed their sum at
any given time.

3.2.1 Determining the Values of MA Stack and Heap Size

How can I determine what the values of MA stack and heap size should be?
The answer to this question depends on the run-time environment of the

program including the availability of shared memory. A part of GA initialization
involves initialization of the ARMCI run-time library. ARMCI dynamically
determines if the program can use shared memory based on the architecture
type and current con�guration of the SMP cluster. For example, on uniprocessor
nodes of the IBM SP shared memory is not used whereas on the SP with SMP
nodes it is. This decision is made at run-time. GA reports the information
about the type of memory used with the function ga_uses_ma(). This function
returns false when shared memory is used and true when MA is used.

Based on this information, a programmer who cares about the e�cient usage
of memory has to consider the amount of memory per single process (MPI task)
needed to store data in global arrays to set the heap size argument value in
ma_init. The amount of stack space depends on the GA operations used by
the program (for example ga_mulmat_patch orga_dgemmneed several MB of
bu�er space to deliver good performance) but it probably should not be less
than 4MB. The stack space is only used when a GA operaion is executing and
it is returned to MA when it completes.

3.3 GA Initialization

The GA library is initialized after a message-passing library and before MA.
It is possible to initialize GA after MA but it is not recommended: GA must
�rst be initialized to determine if it needs shared or MA memory for storing
distributed array data. There are two alternative functions to initialize GA:

CHAPTER 3. INITIALIZATION AND TERMINATION 29

Fortran subroutine GA_initializeGA_initialize()

C void GA_Initialize()

C++ void GA::Initialize(int argc, char **argv)

and

Fortran subroutine GA_Initialize_ltd(limit)

C void GA_Initialize_ltd(size_t limit)

C++ void GA::Initialize(int argc, char **argv, size_t limit)

The �rst interface allows GA to consume as much memory as the application
needs to allocate new arrays. The latter call allows the programmer to establish
and enforce a limit within GA on the memory usage.

Note: In GA++, there is an additional functionality as follows:

C++ void GA::Initialize(int argc, char *argv[],

unsigned long heapSize, unsigned long stackSize,

int type, size_t limit=0)

3.3.1 Limiting Memory Usage by Global Arrays

GA o�ers an optional mechanism that allows a programmer to limit the aggre-
gate memory consumption used by GA for storing Global Array data. These
limits apply regardless of the type of memory used for storing global array
data.They do not apply to temporary bu�er space GA might need to use to
execute any particular operation. The limits are given per process (MPI task)
in bytes. If the limit is set, GA would not allocate more memory in global
arrays that would exceed the speci�ed value - any calls to allocate new arrays
that would simply fail (return false). There are two ways to set the limit:

1. at initialization time by calling ga_initialize_ltd, or

2. after initialization by calling the function

Fortran subroutine ga_set_memory_limit(limit)

C void GA_Set_memory_limit(size_t limit)

C++ void GA::GAServices::setMemoryLimit(size_t limit)

It is encouraged that the user choose the �rst option, even though the user can
intialize the GA normally and set the memory limit later.

Example: Initialization of MA and setting GA memory limits

call ga_initialize()

if (ga_uses_ma()) then

status = ma_init(MT_DBL, stack, heap+global)

else

status = ma_init(mt_dbl,stack,heap)

call ga_set_memory_limit(ma_sizeof(MT_DBL,global,MT_BYTE))

endif

if(.not. status) ... !we got an error condition here

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_initialize
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_initialize
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_initialize_ltd
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_initialize_ltd
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_set_memory_limit
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_set_memory_limit

CHAPTER 3. INITIALIZATION AND TERMINATION 30

In this example, depending on the value returned from ga_uses_ma(), we either
increase the heap size argument by the amount of memory for global arrays or
set the limit explicitly through ga_set_memory_limit(). When GA memory
comes from MA we do not need to set this limit through the GA interface
since MA enforces its memory limits anyway. In both cases, the maximum
amount of memory acquired from the operating system is capped by the value
stack+heap+global.

3.4 Termination

The normal way to terminate a GA program is to call the function

Fortran subroutine ga_terminate()

C void GA_Terminate()

C++ void GA::Terminate()

The programmer can also abort a running program for example as part of han-
dling a programmatically detected error condition by calling the function

Fortran subroutine ga_error(message, code)

C void GA_Error(char *message, int code)

C++ void GA::GAServices::error(char *message, int code)

3.5 Creating Arrays - I

There are three ways to create new arrays:

1. From scratch, for regular distribution, using

n-d Fortran logical function nga_create(type, ndim,

dims, array_name, chunk, g_a)

2-d Fortran logical function ga_create(type, dim1,

dim2, array_name, chunk1, chunk2, g_a)

C int NGA_Create(int type, int ndim, int dims[],

char *array_name, int chunk[])

C++ GA::GlobalArray* GA::GAServices::createGA(int type,

int ndim, int dims[], char *array_name,

int chunk[])

or for regular distribution, using

n-d Fortran logical function nga_create_irreg(type, ndim, dims,

array_name, map, nblock, g_a)

2-d Fortran logical function ga_create_irreg(type, dim1, dim2,

array_name, map1, nblock1, map2, nblock2, g_a)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_terminate
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_initialize
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_error
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_error
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_create
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_create
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_create
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_create_irreg
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_create_irreg

CHAPTER 3. INITIALIZATION AND TERMINATION 31

Figure 3.1: Regular Distribution

C int NGA_Create_irreg(int type, int ndim, int dims[],

C++ GA::GlobalArray* GA::GAServices::createGA(int type,

int ndim, int dims[], char *array_name,

int map[], int block[])

2. Based on a template (an existing array) with the function

Fortran logical function ga_duplicate(g_a, g_b, array_name)

C int GA_Duplicate(int g_a, char *array_name)

C++ int GA::GAServices::duplicate(int g_a, char *array_name)

- or -

C++ GA::GlobalArray* GA::GAServices::createGA(int g_a, char

*array_name)

3. Refer to the "Creating Arrays - II" section.

In this case, the new array inherits all the properties such as distribution,
datatype and dimensions from the existing array.

With the regular distribution shown in Figure 3.1, the programmer can
specify block size for none or any dimension. If block size is not speci�ed
the library will create a distribution that attempts to assign the same number
of elements to each processor (for static load balancing purposes). The actual
algorithm used is based on heuristics.

With the irregular distribution shown in Figure 3.2, the programmer spec-
i�es distribution points for every dimension using map array argument. The
library creates an array with the overall distribution that is a Cartesian prod-
uct of distributions for each dimension. A speci�c example is given in the
documentation.

If an array cannot be created, for example due to memory shortages or an
enforced memory consumption limit, these calls return failure status. Otherwise
an integer handle is returned. This handle represents a global array object in
all operations involving that array. This is the only piece of information the
programmer needs to store for that array. All the properties of the object
(data type, distribution data, name, number of dimensions and values for each

http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_create_irreg
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_duplicate
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_duplicate
http://www.emsl.pnl.gov/docs/global/ga++/classGAServices.html#a17

CHAPTER 3. INITIALIZATION AND TERMINATION 32

Figure 3.2: Irregular Distribution

dimension) can be obtained from the library based on the handle at any time,
see Section 7.4. It is not necessary to keep track of this information explicitly
in the application code.

Note that regardless of the distribution type at most one block can be
owned/assigned to a processor.

3.5.1 Creating Arrays with Ghost Cells

Individual processors ordinarily only hold the portion of global array data that
is represent by the lo and hi index arrays returned by a call to nga_distribution
or that have been set using the nga_create_irreg call. However, it is possible
to create global arrays where this data is padded by a boundary region of array
elements representing portions of the global array residing on other processors.
These boundary regions can be updated with data from neighboring processors
by a call to a single GA function. To create global arrays with these extra data
elements, referred to in the following as ghost cells, the user needs to call either
the functions:

n-d Fortran logical function nga_create_ghosts(type, dims, width,

array_name, chunk, g_a)

C int int NGA_Create_ghosts(int type, int ndim, int dims[],

int width[], char *array_name, int chunk[])

C++ int GA::GAServices::createGA_GhostsGA_Ghosts(int type, int

ndim, int dims[],int width[],

char *array_name, int chunk[])

n-d Fortran logical function nga_create_ghosts_irreg(type, dims, width,

array_name, map, block, g_a)

C int int NGA_Create_ghosts_irreg(int type, int ndim,

int dims[], int width[], char *array_name,

int map[], int block[])

C++ int GA::GAServices::createGA_Ghosts(int type, int ndim,

int dims[], int width[], char *array_name,

int map[], int block[])

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_create_ghosts
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#nga_create_ghosts
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_create_ghosts_irreg
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#nga_create_ghosts_irreg

CHAPTER 3. INITIALIZATION AND TERMINATION 33

Figure 3.3: Ordinary Global Array

These two functions are almost identical to the nga_create and nga_create_irreg
functions described above. The only di�erence is the parameter array width.
This is used to control the width of the ghost cell boundaries in each dimension
of the global array. Di�erent dimensions can be padded with di�erent numbers
of ghost cells, although it is expected that for most applications the widths
will be the same for all dimensions. If the width has been set to zero for all
dimensions, then these two functions are completely equivalent to the functions
nga_create and nga_create_irreg.

To illustrate the use of these functions, an ordinary global array is shown in
Figure 3.3. The boundaries represent the data that is held on each processor.

For a global array with ghost cells, the data distribution can be visualized
as shown in Figure 3.4:

Each processor holds �visible� data, corresponding to the data held on each
processor of an ordinary global array, and �ghost cell� data, corresponding to
neighboring points in the global array that would ordinarily be held on other
processors. This data can be updated in a single call to nga_update, described
under the collective operations section of the user documentation. Note that the
ghost cell data duplicates some portion of the data in the visible portion of the
global array. The advantage of having the ghost cells is that this data ordinarily
resides on other processors and can only be retrieved using additional calls. To
access the data in the ghost cells, the user must use the nga_access_ghosts

function described in Section 6.1.

CHAPTER 3. INITIALIZATION AND TERMINATION 34

Figure 3.4: Global Array with Ghost Cells

3.6 Creating Arrays - II

As mentioned in the previous section ("Creating arrays - I"), there are 3 ways
to create arrays. This section describes method #3 to create arrays. Because of
the increasingly varied ways that global arrays can be con�gured, a set of new
interfaces for creating global arrays has been created. This interface supports all
the con�gurations that were accessible via the old ga_create_XXX calls, as well
as new options that can only be accessed using the new interface. Creating global
arrays using the new interface starts by a call to ga_create_handle that returns
the user a new global array handle. The user then calls several ga_set_XXX
calls to assign properties to this handle. These properties include the dimension
of the array, the data type, the size of the array, and any other properties that
may be relevant. At present, the available ga_set_XXX calls largely re�ect
properties that are accessible via the nga_create_XXX calls, however, it is
anticipated that the range of properties that can be set using these calls will
expand considerably in the future. After all the properties have been set, the
user calls ga_allocate on the array handle and memory is allocated for the array.
The array can now be used in exactly the same way as arrays created using the
traditional ga_create_XXX calls. The calls for obtaining a new global array
handle are

n-d Fortran integer function ga_create_handle()

C int GA_Create_handle()

Properties of the global arrays can be set using the ga_set_XXX calls. Note
that the only required call is to ga_set_data. The others are all optional.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#NGA_CREATE_HANDLE
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_CREATE_HANDLE

CHAPTER 3. INITIALIZATION AND TERMINATION 35

n-d Fortran subroutine ga_set_data(g_a, ndim, dims, type)

C void GA_Set_data(int g_a, int ndim, int *dims, int type)

The argument g_a is the global array handle, ndim is the dimension of the
array, dims is an array of ndim numbers containing the dimensions of the array,
and type is the data type as de�ned in either the macdecls.h or mafdecls.h �les.
Other options that can be set using these subroutines are:

n-d Fortran subroutine ga_set_array_name(g_a, array_name)

C void GA_Set_array_name(int g_a, char *array_name)

This subroutine assigns a character string as an array name to the global array.

n-d Fortran subroutine ga_set_chunk(g_a, chunk)

C void GA_Set_chunk(int g_a, int *chunk)

The chunk array contains the minimum size dimensions that should be allocated
to a single processor. If the minimum size is set to -1 for some of the dimensions,
then the minimum size allocation is left to the GA toolkit. The default setting
of the chunk array is -1 along all dimensions.

n-d Fortran subroutine ga_set_irreg_distr(g_a, map, block)

C void GA_Set_irreg_distr(int g_a, int *map, int *block)

The ga_set_irreg_distr subroutine can be used to specify the distribution of
data among processors. The block array contains the processor grid used to lay
out the global array and the map array contains a list of the �rst indices of each
block along each of the array axes. If the �rst value in the block array is M,
then the �rst M values in the map array are the �rst indices of each data block
along the �rst axis in the processor grid. Similarly, if the second value in the
block array is N, then the values in the map array from M+1 to M+N are the
�rst indices of the each data block along the second axis and so on through the
D dimensions of the global array.

n-d Fortran subroutine ga_set_ghosts(g_a, width)

C void GA_Set_ghosts(int g_a, int *width)

This call can be used to set the ghost cell width along each of the array dimen-
sions.

n-d Fortran subroutine ga_set_pgroup(g_a, p_group)

C void ga_set_pgroup(int g_a, int p_group)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#NGA_SET_DATA
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_SET_DATA
http://www.emsl.pnl.gov/docs/global/ga_ops.html#NGA_SET_ARRAY_NAME
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_SET_ARRAY_NAME
http://www.emsl.pnl.gov/docs/global/ga_ops.html#NGA_SET_CHUNK
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_SET_CHUNK
http://www.emsl.pnl.gov/docs/global/ga_ops.html#NGA_SET_IRREG_DISTR
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_SET_IRREG_DISTR
http://www.emsl.pnl.gov/docs/global/ga_ops.html#NGA_SET_GHOSTS
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_SET_GHOSTS
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_SET_PGROUP
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_SET_PGROUP

CHAPTER 3. INITIALIZATION AND TERMINATION 36

This call assigns a processor group to the global array. If no processor group is
assigned to the global array, it is assumed that the global array is created on
the default processor group.

After all the array properties have been set, memory for the global array is
allocated by a call to ga_allocate. After this call, the global array is ready for
use inside the parallel application.

n-d Fortran logical function ga_allocate(g_a)

C int GA_Allocate(int g_a)

This function returns a logical variable that is true if the global array was
successfully allocated and false otherwise.

3.7 Destroying Arrays

Global arrays can be destroyed by calling the function

Fortran logical ga_destroy(g_a)

C void GA_Destroy(int g_a)

C++ void GA::GlobalArray::destroy()

that takes as its argument a handle representing a valid global array. It is a
fatal error to call ga_destroy with a handle pointing to an invalid array.

All active global arrays are destroyed implicitly when the user calls ga_terminate.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_ALLOCATE
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_ALLOCATE
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_destroy
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_destroy

Chapter 4

One-sided Communication

Operations

37

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 38

Global Arrays provide one-sided, noncollective communication operations
that allow to access data in global arrays without cooperation with the process or
processes that hold the referenced data. These processes do not know what data
items in their own memory are being accessed or updated by remote processes.
Moreover, since the GA interface uses global array indices to reference nonlocal
data, the calling process does not even have to know process ids and location in
memory where the refernenced data resides.

The one-sided operations that Global Arrays provide can be summarized
into three categories:

Operation Process

Remote blockwise
write/read

ga_put, ga_get

Remote atomic update ga_acc, ga_read_inc,

ga_scatter_acc

Remote elementwise
write/read

ga_scatter, ga_gather

4.1 Put/Get

Put and get are two powerful operations for interprocess communication, per-
forming remote write and read. Because of their one-sided nature, they don't
need cooperation from the process(es) that owns the data. The semantics of
these operations do not require the user to specify which remote process or pro-
cesses own the accessed portion of a global array. The data is simply accessed
as if it were in shared memory.

Put copies data from the local array to the global array section, which is

n-D Fortran subroutine nga_put(g_a, lo, hi, buf, ld)

2-D Fortran subroutine ga_put(g_a, ilo, ihi, jlo, jhi, buf, ld)

C void NGA_Put(int g_a, int lo[], int hi[], void *buf,

int ld[])

C++ void GA::GlobalArray::put(int lo[], int hi[],

void *buf, int ld[])

All the arguments are provided in one call: lo and hi specify where the data
should go in the global array; ld speci�es the stride information of the local
array buf. The local array should have the same number of dimensions as the
global array; however, it is really required to present the n-dimensional view of
the local memory bu�er, that by itself might be one-dimensional.

The operation is transparent to the user, which means the user doesn't have
to worry about where the region de�ned by lo and hi is located. It can be in
the memory of one or many remote processes, owned by the local process, or
even mixed (part of it belongs to remote processes and part of it belongs to a
local process).

Get is the reverse operation of put. It copies data from a global array section
to the local array. It is

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_put
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_put
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_put

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 39

n-D Fortran subroutine nga_get(g_a, lo, hi, buf, ld)

2-D Fortran subroutine ga_get(g_a, ilo, ihi, jlo, jhi, buf, ld)

C void NGA_get(int g_a, int lo[], int hi[],

void *buf, int ld[])

C++ void GA::GlobalArray::get(int lo[], int hi[],

void *buf, int ld[])

Similar to put, lo and hi specify where the data should come from in the global
array, and ld speci�es the stride information of the local array buf. The local
array is assumed to have the same number of dimensions as the global array.
Users don't need to worry about where the region de�ned by lo and hi is
physically located.

Example:
For a ga_get operation transferring data from the (11:15,1:5) section of a

2-dimensional 15 x10 global array into a local bu�er 5 x10 array we have: (In
Fortran notation)

lo={11,1}, hi={15,5}, ld={10}

4.2 Accumulate and Read-and-increment

It is often useful in a put operation to combine the data moved to the target
process with the data that resides at that process, rather then replacing the
data there. Accumulate and read_inc perform an atomic remote update to a
patch (a section of the global array) in the global array and an element in the
global array, respectively. They don't need the cooperation of the process(es)
who owns the data. Since the operations are atomic, the same portion of a
global array can be referenced by these operations issued by multiple processes
and the GA will assure the correct and consistent result of the updates.

Accumulate combines the data from the local array with data in the global
array section, which is

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_get
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_get
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_get

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 40

n-D Fortran subroutine nga_acc(g_a, lo, hi, buf, ld, alpha)

2-D Fortran subroutine ga_acc(g_a, ilo, ihi, jlo, jhi, buf,

ld, alpha)

C void NGA_Acc(int g_a, int lo[], int hi[], void *buf,

int ld[], void *alpha)

C++ void NGA::GlobalArray::acc(int lo[], int hi[],

void *buf, int ld[], v

oid *alpha)

The local array is assumed to have the same number of dimensions as the global
array. Users don't need to worry about where the region de�ned by lo and hi is
physically located. The function performs

global array section (lo[], hi[]) += alpha * buf
Read_inc remotely updates a particular element in the global array, which

is

n-D Fortran subroutine nga_read_inc(g_a, subscript, inc)

2-D Fortran subroutine ga_read_inc(g_a, i, j, inc)

C long NGA_Read_inc(int g_a, int subscript[], long inc)

C++ long GA::GlobalArray::readInc(int subscript[], long inc)

This function applies to integer arrays only. It atomically reads and increments
an element in an integer array. It performs

a(subsripts) += inc
and returns the original value (before the update) of a(subscript).

4.3 Scatter/Gather

Scatter and gather transfer a speci�ed set of elements to and from global arrays.
They are one-sided: that is they don't need the cooperation of the process(es)
who own the referenced elements in the global array.

Scatter puts array elements into a global array, which is

n-D Fortran subroutine nga_scatter(g_a, v, subsarray, n)

2-D Fortran subroutine ga_scatter(g_a, v, i, j, n)

C void NGA_Scatter(int g_a, void *v, int

*subsarray[], int n)

C++ void GA::GlobalArray::scatter(void *v,

int *subsarray[], int n)

It performs (in C notation)

for(k=0; k<= n; k++) {

a[subsArray[k][0]][subsArray[k][1]][subsArray[k][2]]... = v[k];

}

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_acc
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_acc
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_acc
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_read_inc
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_read_inc
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_read_inc
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_scatter
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_scatter
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_scatter

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 41

Example:
Scatter the 5 elements into a 10x10 global array

Element 1 v[0] = 5 subsArray[0][0] = 2

subsArray[0][1] = 3

Element 2 v[1] = 3 subsArray[1][0] = 3

subsArray[1][1] = 4

Element 3 v[2] = 8 subsArray[2][0] = 8

subsArray[2][1] = 5

Element 4 v[3] = 7 subsArray[3][0] = 3

subsArray[3][1] = 7

Element 5 v[4] = 2 subsArray[4][0] = 6

subsArray[4][1] = 3

After the scatter operation, the �ve elements would be scattered into the global
array as shown in the following �gure.

Gather is the reverse operation of scatter. It gets the array elements from a
global array into a local array.

n-D Fortran subroutine nga_gather(g_a, v, subsarray, n)

2-D Fortran subroutine ga_gatherga_gather(g_a, v, i, j, n)

C void NGA_Gather(int g_a, void *v,

int *subsarray[], int n)

C++ void GA::GlobalArray::gather(void *v, int

*subsarray[], int n)

It performs (in C notation)

for(k=0; k<= n; k++){

v[k] = a[subsArray[k][0]][subsArray[k][1]][subsArray[k][2]]...;

}

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_gather
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_gather
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_gather

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 42

4.4 Periodic Interfaces

Periodic interfaces to the one-sided operations have been added to Global Ar-
rays in version 3.1 to support some computational �uid dynamics problems on
multidimensional grids. They provide an index translation layer that allows
you to use put, get, and accumulate operations, possibly extending beyond the
boundaries of a global array. The references that are outside of the boundaries
are wrapped up inside the global array. To better illustrate these operations,
look at the following example:

Example:
Assume a two dimensional global array g_a with dimensions 5 X 5.

To access a patch [2:4,-1:3], one can assume that the array is wrapped over
in the second dimension, as shown in the following �gure

Therefore the patch [2:4, -1:3] is

17 22 2 7 12

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 43

18 23 3 8 13

19 24 4 9 14

Periodic operations extend the boudary of each dimension in two directions,
toward the lower bound and toward the upper bound. For any dimension with
lo(i) to hi(i), where 1 < i < ndim, it extends the range from

[lo(i) : hi(i)]

to

[(lo(i)-1-(hi(i)-lo(i)+1)) : (lo(i)-1)], [lo(i) : hi(i)],

and

[(hi(i)+1) : (hi(i)+1+(hi(i)-lo(i)+1))],

or

[(lo(i)-1-(hi(i)-lo(i)+1)) : (hi(i)+1+(hi(i)-lo(i)+1))].

Even though the patch spans in a much large range, the length must always be
less, or equal to (hi(i)-lo(i)+1)).

Example: For a 2 x 2 array as shown in the following �gure, where the
dimensions are [1:2, 1:2], periodic operations would look at the range of each of
the dimensions as [-1:4, -1:4].

Current version of GA supports three periodic operations. They are

• periodic get,

• periodic put, and

• periodic accumulate

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 44

Periodic Get copies data from a global array section to a local array, which is
almost the same as regular get, except the indices of the patch can be outside
the boundaries of each dimension.

Fortran subroutine nga_periodic_get(g_a, lo, hi, buf, ld)

C void NGA_Periodic_get(int g_a, int lo[], int hi[],

void *buf, int ld[])

C++ void GA::GlobalArray::periodicGet(int lo[],

int hi[], void *buf, int ld[])

Similar to regular get, lo and hi specify where the data should come from in
the global array, and ld speci�es the stride information of the local array buf.

Example: Let us look at the �rst example in this section. It is 5 x 5 two
dimensional global array. Assume that the local bu�er is an 4x3 array.

Also assume that

1o[0] = -1, hi[0] = 2,

lo[1] = 4, hi[1] = 6, and

ld[0] = 4.

The local bu�er buf is

19 24 4

20 25 5

16 21 1

17 22 2

Periodic Put is the reverse operations of Periodic Get. It copies data from the
local array to the global array section, which is

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_periodic_get
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_periodic_get

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 45

Fortran subroutine nga_periodic_put(g_a, lo, hi, buf, ld)

C void NGA_Periodic_put(int g_a, int lo[], int hi[],

void *buf, int ld[])

C++ void GA::GlobalArray::periodicPut(int lo[],

int hi[], void *buf, int ld[])

Similar to regular put, lo and hi specify where the data should go in the global
array; ld speci�es the stride information of the local array buf.

Periodic Put/Get (also include the Accumulate, which will be discussed later
in this section) divide the patch into several smaller patches. For those smaller
patches that are outside the global aray, adjust the indices so that they rotate
back to the original array. After that call the regular Put/Get/Accumulate, for
each patch, to complete the operations.

Example: Look at the example for periodic get. Because it is a 5 x 5 global
array, the valid indices for each dimension are

dimension 0: [1 : 5]

dimension 1: [1 : 5]

The speci�ed lo and hi are apparently out of the range of each dimension:

dimemsion 0: [-1 : 2] --> [-1 : 0] -- wrap back --> [4 : 5] [1 : 2] ok

dimension 1: [4 : 6] --> [4 : 5] ok [6 : 6] -- wrap back --> [1 : 1]

Hence, there will be four smaller patches after the adjustment. They are

patch 0: [4 : 5, 4 : 5]

patch 1: [4 : 5, 1 : 1]

patch 2: [1 : 2, 4 : 5]

patch 3: [1 : 2, 1 : 1]

as shown in the following �gure

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_periodic_put
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_periodic_put

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 46

Of course the destination addresses of each samller patch in the local bu�er
also need to be calculated.

Similar to regular Accumulate, Periodic Accumulate combines the data from
the local array with data in the global array section, which is

Fortran subroutine nga_periodic_acc(g_a, lo, hi, buf, ld, alpha)

C void NGA_Periodic_acc(int g_a, int lo[], int hi[],

void *buf, int ld[], void *alpha)

C++ void GA::GlobalArray::periodicAcc(int lo[], int hi[],

void *buf, int ld[], void *alpha)

The local array is assumed to have the same number of dimensions as the global
array. Users don't need to worry about where the region de�ned by lo and hi

is physically located. The function performs
global array section (lo[], hi[]) += alpha * buf
Example: Let us look at the same example as above. There is a 5 x 5 two

dimensional global array. Assume that the local bu�er is an 4x3 array.
Also assume that

1o[0] = -1, hi[0] = 2,

lo[1] = 4, hi[1] = 6, and

ld[0] = 4.

The local bu�er buf is

1 5 9

4 6 5

3 2 1

7 8 2

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_periodic_acc
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_periodic_acc

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 47

and the alpha = 2.
After the Periodic Accumulate operation, the global array will be

4.5 Non-blocking operations

The non-blocking operations (get/put/accumulate) are derived from the block-
ing interface by adding a handle argument that identi�es an instance of the
non-blocking request. Nonblocking operations initiate a communication call and
then return control to the application. A return from a nonblocking operation
call indicates a mere initiation of the data transfer process and the operation can
be completed locally by making a call to the wait (e.g. nga_nbwait) routine.

The wait function completes a non-blocking one-sided operation locally.
Waiting on a nonblocking put or an accumulate operation assures that data
was injected into the network and the user bu�er can be now be reused. Com-
pleting a get operation assures data has arrived into the user memory and is
ready for use. Wait operation ensures only local completion. Unlike their block-
ing counterparts, the nonblocking operations are not ordered with respect to the
destination. Performance being one reason, the other reason is that by ensuring
ordering we incur additional and possibly unnecessary overhead on applications
that do not require their operations to be ordered. For cases where ordering is
necessary, it can be done by calling a fence operation. The fence operation is
provided to the user to con�rm remote completion if needed.

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 48

Example: Let us take a simple case for illustration. Say, there are two global arrays
i.e. one array stores pressure and the other stores temperature. If there are two
computation phases (�rst phase computes pressure and second phase computes
temperature), then we can overlap communication with computation, thus hiding
latency.

.

nga_get (get_pressure_array)

nga_nbget(initiates data transfer to get temperature_array,

and returns immediately)

compute_pressure() /* hiding latency - communication

is overlapped with computation */

nga_nbwait(temperature_array - completes data transfer)

compute_temperature()

.

The non-blocking APIs are derived from the blocking interface by adding a
handle argument that identi�es an instance of the non-blocking request.

n-D Fortran subroutine nga_nbput(g_a, lo, hi, buf, ld, nbhandle)

n-D Fortran subroutine nga_nbget(g_a, lo, hi, buf, ld, nbhandle)

n-D Fortran subroutine nga_nbacc(g_a, lo, hi, buf, ld, alpha,

nbhandle)

n-D Fortran subroutine nga_nbwait(nbhandle)

2-D Fortran subroutine ga_nbput(g_a, ilo, ihi, jlo, jhi, buf,

ld, nbhandle)

2-D Fortran subroutine ga_nbget(g_a, ilo, ihi, jlo, jhi, buf,

ld, nbhandle)

2-D Fortran subroutine ga_nbacc(g_a, ilo, ihi, jlo, jhi, buf,

ld, alpha, nbhandle)

2-D Fortran subroutine ga_nbwait(nbhandle)

C void NGA_NbPut(int g_a, int lo[], int hi[],

void *buf, int ld[], ga_nbhdl_t* nbhandle)

C void NGA_NbGet(int g_a, int lo[], int hi[],

void *buf, int ld[], ga_nbhdl_t* nbhandle)

C void NGA_NbAcc(int g_a, int lo[], int hi[],

void *buf, int ld[], void *alpha,

ga_nbhdl_t* nbhandle)

C int NGA_NbWait(ga_nbhdl_t* nbhandle)

C++ void GA::GlobalArray::nbPut(int lo[], int hi[],

void *buf,

int ld[], ga_nbhdl_t* nbhandle)

C++ void GA::GlobalArray::nbGet(int lo[], int hi[],

void *buf,

int ld[], ga_nbhdl_t* nbhandle)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#nga_nbput
http://www.emsl.pnl.gov/docs/global/ga_ops.html#nga_nbget
http://www.emsl.pnl.gov/docs/global/ga_ops.html#nga_nbacc
http://www.emsl.pnl.gov/docs/global/ga_ops.html#nga_nbwait
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_nbput
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_nbget
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_nbacc
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_nbwait
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_nbput
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_nbget
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_nbacc
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_nbwait

CHAPTER 4. ONE-SIDED COMMUNICATION OPERATIONS 49

C++ void GA::GlobalArray::nbAcc(int lo[], int hi[],

void *buf,

int ld[], void *alpha, ga_nbhdl_t* nbhandle)

C++ int GA::GlobalArray::NbWait(ga_nbhdl_t* nbhandle)

Chapter 5

Interprocess Synchronization

50

CHAPTER 5. INTERPROCESS SYNCHRONIZATION 51

Global Arrays provide three types of synchronization calls to support di�er-
ent synchronization styles.

Lock with mutex: is useful for a shared memory model.
One can lock a mutex, to exclusively
access a critical section.

Fence: guarantees that the Global Array
operations issued from the calling
process are complete. The fence
operation is local.

Sync: is a barrier. It synchronizes processes
and ensures that all Global Array
operations are completed. Sync
operation is collective.

5.1 Lock and Mutex

Lock works together with mutex. It is a simple synchronization mechanism used
to protect a critical section.To enter a critical section, typically, one needs to
do:

1. Create mutexes

2. Lock on a mutex

3. ...

Do the exclusive operation in the critical section

...

4. Unlock the mutex

5. Destroy mutexes

The function

Fortran logical function ga_create_mutexes(number)

C int GA_Create_mutexes(int number)

C++ int GA::GAServices::createMutexes(int number)

creates a set containing the number of mutexes. Only one set of mutexes can
exist at a time. Mutexes can be created and destroyed as many times as needed.
Mutexes are numbered: 0, ..., number-1.

The function

Fortran logical function ga_destroy_mutexes()

C int GA_Destroy_mutexes()

C++ int GA::GAServices::destroyMutexes()

destroys the set of mutexes created with ga_create_mutexes.
Both ga_create_mutexes and ga_destroy_mutexes are collective opera-

tions.
The functions

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_create_mutex
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_create_mutexes
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_destroy_mutex
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_destroy_mutexes

CHAPTER 5. INTERPROCESS SYNCHRONIZATION 52

Fortran subroutine ga_lock(int mutex)

subroutine ga_unlock(int mutex)

C void GA_lock(int mutex)

void GA_unlock(int mutex)

C++ void GA::GAServices::lock(int mutex)

void GA::GAServices::unlock(int mutex)

lock and unlock a mutex object identi�ed by the mutex number, respectively.
It is a fatal error for a process to attempt to lock a mutex which has already
been locked by this process, or unlock a mutex which has not been locked by
this process.

Example 1:
Use one mutex and the lock mechanism to enter the critical section.

status = ga_create_mutexes(1)

if(.not.status) then

call ga_error('ga_create_mutexes failed ',0)

endif

call ga_lock(0)

... do something in the critical section

call ga_put(g_a, ...)

...

call ga_unlock(0)

if(.not.ga_destroy_mutexes()) then

call ga_error('mutex not destroyed',0)

5.2 Fence

Fence blocks the calling process until all the data transfers corresponding to the
Global Array operations initiated by this process complete. The typical scenario
that it is being used is

1. Initialize the fence

2. ...

Global array operations

...

3. Fence

This would guarantee the operations between step 1 and 3 are complete.
The function

Fortran subroutine ga_init_fence()

C void GA_Init_fence()

C++ void GA::GAServices::initFence()

Initializes tracing of completion status of data movement operations.
The function

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_lock
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_unlock
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_lock
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_unlock
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_init_fence
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_init_fence

CHAPTER 5. INTERPROCESS SYNCHRONIZATION 53

Fortran subroutine ga_fence()

C void GA_Fence()

C++ void GA::GAServices::fence()

blocks the calling process until all the data transfers corresponding to GA op-
erations called after ga_init_fence complete.

ga_fence must be called after ga_init_fence. A barrier, ga_sync, assures
completion of all data transfers and implicitly cancels outstanding ga_init_fence.
ga_init_fence and ga_fence must be used in pairs, multiple calls to ga_fence
require the same number of corresponding ga_init_fence calls. ga_init_fence/ga_fence
pairs can be nested.

Example 1:
Since ga_put might return before the data reaches the �nal destination

ga_init_fence and ga_fence allow the process to wait until the data is ac-
tually moved:

call ga_init_fence()

call ga_put(g_a, ...)

call ga_fence()

Example 2:
ga_fence works for multiple GA operations.

call ga_init_fence()

call ga_put(g_a, ...)

call ga_scatter(g_a, ...)

call ga_put(g_b, ...)

call ga_fence()

The calling process will be blocked until data movements initiated by two calls
to ga_put and one ga_scatter complete.

5.3 Sync

Sync is a collective operation. It acts as a barrier, which synchronizes all the
processes and ensures that all the Global Array operations are complete at the
call.

The function is

Fortran subroutine ga_sync()

C void GA_Sync()

C++ void GA::GAServices::sync()

Sync should be inserted as necessary. With many sync calls, the application
performance would su�er.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_fence
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_fence
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_sync
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_sync

Chapter 6

Collective Array Operations

54

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 55

Global Arrays provide functions for collective array operations, targeting
both whole arrays and patches (portions of global arrays). Collective operations
require all the processes to make the call. In the underlying implementation,
each process deals with its local data. These functions include:

• basic array operations,

• linear algebra operations, and

• interfaces to third party software packages.

6.1 Basic Array Operations

Global Arrays provide several mechanisms to manipulate contents of the arrays.
One can set all the elements in an array/patch to a speci�c value, or as a special
case set to zero. Since GA does not explicitly initialize newly created arrays,
these calls are useful for initialization of an array/patch. (To �ll the array with
di�erent values for each element, one can choose the one sided operation putor
each process can initialize its local portion of an array/patch like ordinary local
memory). One can also scale the array/patch by a certain factor, or copy the
contents of one array/patch to another.

6.1.1 Whole Arrays

These functions apply to the entire array.
The function

Fortran subroutine ga_zero(g_a)

C void GA_Zero(int g_a)

C++ void GA::GlobalArray::zero()

sets all the elements in the array to zero.
To assign a single value to all the elements in an array, use the function

Fortran subroutine ga_fill(g_a, val)

C void GA_Fill(int g_a, void *val)

C++ void GA::GlobalArray::fill(void *val)

It sets all the elements in the array to the value val. The val must have the
same data type as that of the array.

The function

Fortran subroutine ga_scale(g_a, val)

C void GA_scale(int g_a, void *val)

C++ void GA::GlobalArray::scale(void *val)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_zero
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_zero
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_fill
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_fill
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_scale
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_scale

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 56

scales all the elements in the array by factor val. Again the val must be the
same data type as that of the array itself.

The above three functions are dealing with one global array, to set values or
change all the elements together. The following functions are for copying data
between two arrays.

The function

Fortran subroutine ga_copy(g_a, g_b)

C void GA_copy(int g_a, int g_b)

C++ void GA::GlobalArray::copy

(const GA::GlobalArray * g_a)

copies the contents of one array to another. The arrays must be of the same
data type and have the same number of elements.

For global arrays containing ghost cells, the ghost cell data can be �lled in
with the corresponding data from neighboring processors using the command

n-d Fortran subroutine ga_copy(g_a, g_b)

C void GA_copy(int g_a, int g_b)

C++ void GA::GlobalArray::

copy(const GA::GlobalArray * g_a)

n-d Fortran subroutine ga_update_ghosts(g_a)

C void ga_update_ghosts(int g_a)

C++ void GA::GlobalArray::updateGhosts()

This operation updates the ghost cell data by assuming periodic, or wrap-
around, boundary conditions similar to those described for the nga_periodic_get

operations described above. The wrap-around conditions are always applied, it
is up to the individual application to decide whether or not the data in the ghost
cells should be used. The update operation is illustrated below for a simple 4x2
global array distributed across two processors. The ghost cells are one element
wide in each dimension.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_copy
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_copy
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_copy
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_copy
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_update_ghosts
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_update_ghosts

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 57

n-d Fortran logical function nga_update_ghosts_dir(g_a,

dimension, idir, flag)

C int NGA_Update_ghosts_dir(int g_a, int

dimension, int idir, int cflag)

C++ int GA::GlobalArray::updateGhostsDir

(int dimension, int idir, int cflag)

This function can be used to update the ghost cells along individual directions.
It is designed for algorithms that can overlap updates with computation.

The variable dimension indicates which coordinate direction is to be updated
(e.g. dimension = 1 would correspond to the y axis in a two or three dimensional
system), the variable idir can take the values +/-1 and indicates whether the side
that is to be updated lies in the positive or negative direction, and c�ag indicates
whether or not the corners on the side being updated are to be included in the
update. The following calls would be equivalent to a call to GA_Update_ghosts

for a 2-dimensional system:

status = NGA_Update_ghost_dir(g_a,0,-1,1);

status = NGA_Update_ghost_dir(g_a,0,1,1);

status = NGA_Update_ghost_dir(g_a,1,-1,0);

status = NGA_Update_ghost_dir(g_a,1,1,0);

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_update_ghost_dir
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#nga_update_ghost_dir

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 58

The variable c�ag is set equal to 1 (or non-zero) in the �rst two calls so that the
corner ghost cells are update, it is set equal to 0 in the second two calls to avoid
redundant updates of the corners. Note that updating the ghosts cells using
several independent calls to the nga_update_ghost_dir functions is generally
not as e�cient as using GA_Update_ghosts unless the individual calls can be
e�ectively overlapped with computation. This is a collective operation.

6.1.2 Patches

GA provides a set of operations on segments of the global arrays, namely patch
operations. These functions are more general, in a sense they can apply to
the entire array(s). As a matter of fact, many of the Global Array collective
operations are based on the patch operations, for instance, the GA_Printis

only a special case of NGA_Print_patch, called by setting the bounds of the
patch to the entire global array. There are two interfaces for Fortran, one
for two dimensional and the other for n-dimensional (one to seven). The (n-
dimensional) interface can surely handle the two dimensional case as well. It is
available for backward compatibility purposes. The functions dealing with n-
dimensional patches use the "nga"pre�x and those dealing with two dimensional
patches start with the "ga" pre�x.

The function

Fortran subroutine nga_zero_patchnga_zero_patch(g_a, alo, ahi)

C void NGA_Zero_patch(int g_a, int lo[] int hi[])

C++ void GA::GlobalArray::zeroPatch(int lo[] int hi[])

is similar to ga_zero, except that instead of applying to entire array, it sets only
the region de�ned by lo and hi to zero.

One can assign a single value to all the elements in a patch with the function:

n-DFortran subroutine nga_fill_patch(g_a, lo, hi, val)

2-DFortran subroutine ga_fill_patch(g_a, ilo, ihi,

jlo, jhi, val)

C void NGA_Fill_patch(int g_a, int lo[]

int hi[], void *val)

C++ void GA::GlobalArray::fillPatch(int lo[]

int hi[], void *val)

The lo and hi de�nes the patch and the val is the value to set.
The function

n-DFortran subroutine nga_scale_patch(g_a, lo, hi, val)

2-DFortran subroutine ga_scale_patch(g_a, ilo, ihi, jlo,

jhi, val)

C void NGA_Scale_patch(int g_a, int lo[] int

hi[], void *val)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_zero_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_zero_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_fill_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_fill_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_fill_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_scale_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_scale_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_scale_patch

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 59

C++ void GA::GlobalArray::scalePatch(int lo[]

int hi[], void *val)

scales the patch de�ned by lo and hi by the factor val.
The copy patch operation is one of the fundamental and frequently used

functions. The function

n-DFortran subroutine nga_copy_patch(trans, g_a, alo,

ahi, g_b, blo, bhi)

2-DFortran subroutine ga_copy_patch(trans, g_a, ailo,

aihi, ajlo, ajhi, g_b, bilo, bihi,

bjlo, bjhi)

C void NGA_Copy_patch(char trans, int g_a ,

int alo[], int ahi[], int g_b,

int blo[], int bhi[])

C++ voidGA::GlobalArray::copyPatch(char trans,

const GA::GlobalArray* g_a, int alo[],

int ahi[], int blo[], int bhi[])

copies one patch de�ned by alo and ahi in one global array g_ato another patch
de�ned by blo and bhi in another global array g_b. The current implementation
requires that the source patch and destination patch must be on di�erent global
arrays. They must also be the same data type. The patches may be of di�erent
shapes, but the number of elements must be the same. During the process of
copying, the transpose operation can be performed by specifying trans.

Example: Assume that there two 8x6 Global Arrays, g_a and g_b,distributed
on three processes. The operation of nag_copy_patch(Fortran notation), from

g_a: alo = {2, 2}, ahi = {4, 5}

to

g_b: blo = {3, 4}, bhi = {6, 6}

and

trans = 0

involves reshaping. It is illustrated in the following �gure.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_copy_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_copy_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_copy_patch

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 60

One step further, if one also want to perform the transpose operation during
the copying, i.e. set trans = 1, it will look like:

If there is no reshaping or transpose, the operation can be fast (internally
calling nga_put). Otherwise, it would be slow (internally calling nga_scatter,
where extra time is spent on preparing the indices). Also note that extra memory
is required to hold the indices if the operation involves reshaping or transpose.

6.2 Linear Algebra

Global arrays provide three linear algebra operations: addition, multiplication,
and dot product. There are two sets of functions, one for the whole array and
the other for the patches.

6.2.1 Whole Arrays

The function

Fortran subroutine ga_add(alpha, g_a, beta, g_b, g_c)

C void GA_Add(void *alpha, int g_a,

void *beta,int g_b, int g_c)

C++ void GA::GlobalArray::add(void *alpha,

const GA::GlobalArray* g_a,

void *beta, const GA::GlobalArray* g_b)

adds two arrays, g_a and g_b, and saves the results to g_c. The two source
arrays can be scaled by certain factors. This operation requires the two source
arrays have the same number of elements and the same data types, but the
arrays can have di�erent shapes or distributions. g_c can also be g_a or g_b.
It is encouraged to use this function when the two source arrays are identical
in distributions and shapes, because of its e�ciency. It would be less e�cient if
the two source arrays are di�erent in distributions or shapes.

Matrix multiplication operates on two matrices, therefore the array must be
two dimensional. The function

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_add
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_add

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 61

Fortran subroutine ga_dgemm(transa, transb, m, n, k,

alpha, g_a, g_b, beta, g_c)

C void GA_Dgemm(char ta, char tb, int m, int n,

int k, double alpha, int g_a, int g_b,

double beta, int g_c)

C++ void GA::GlobalArray::dgemm(char ta, char tb,

int m, int n, int k, double alpha,

const GA::GlobalArray* g_a, const GA::GlobalArray*

g_b, double beta)

Performs one of the matrix-matrix operations:
C := alpha*op(A)*op(B) + beta*C,
where op(X) is one of
op(X) = X or op(X) = X',
alpha and beta are scalars, and A, B, and C are matrices, with op(A) an

m by k matrix, op(B) a k by n matrix and C an m by n matrix.
On entry, transa speci�es the form of op(A) to be used in the matrix

multiplication as follows:
ta = 'N' or 'n', op(A) = A.
ta = 'T' or 't', op(A) = A'.
The function

Fortran integer function ga_idot(g_a, g_b)

double precision function ga_ddot(g_a, g_b)

double complex function ga_zdot(g_a, g_b)

C long GA_Idot(int g_a, int g_b)

double GGA_DdotA_Ddot(int g_a, int g_b)

DoubleComplex GA_ZdotGA_Zdot(int g_a, int g_b)

C++ long GA::GlobalArray::idot

(const GA::GlobalArray* g_a)

double GA::GlobalArray::ddot

(const GA::GlobalArray* g_a)

DoubleComplex GA::GlobalArray::zdot

(const GA::GlobalArray* g_a)

computes the element-wise dot product of two arrays. It is available as three
separate functions, corresponding to integer, double precision and double com-
plex data types.

The following functions apply to the 2-dimensional whole arrays only. There
are no corresponding functions for patch operations.

The function

Fortran subroutine ga_symmetrize(g_a)

C void GA_Symmetrize(int g_a)

C++ void GA::GlobalArray::symmetrize()

symmetrizes matrix A represented with handle g_a:A = .5 * (A+A').
The function

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_dgemm
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_dgemm
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_ddot
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_zdot
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_dot
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_dot
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_dot
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_symmetrize
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_symmetrize

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 62

Fortran subroutine ga_transpose(g_a, g_b)

C void GA_Transpose(int g_a, int g_b)

C++ void GA::GlobalArray::transpose

(const GA::GlobalArray* g_a)

transposes a matrix: B = A'.

6.2.2 Patches

The functions

n-DFortran subroutine nga_add_patch(alpha, g_a,

alo, ahi, beta, g_b, blo,

bhi, g_c, clo, chi)

2-DFortran subroutine ga_add_patch(alpha, g_a,

ailo, aihi, ajlo, ajhi,

beta, g_b, bilo, bihi, bjlo,

bjhi, g_c, cilo, cihi, cjlo, cjhi)

C void NGA_Add_patch(void *alpha, int g_a, int

alo[], int ahi[], void *beta,

int g_b, int blo[], int bhi[],

int g_c, int clo[], int chi[])

C++ void GA::GlobalArray::addPatch(void *alpha,

const GA::GlobalArray* g_a,

int alo[], int ahi[], void *beta,

const GA::GlobalArray* g_b, int blo[],

int bhi[], int clo[], int chi[])

add element-wise two patches and save the results into another patch. Even
though it supports the addition of two patches with di�erent distributions or
di�erent shapes (the number of elements must be the same), the operation can be
expensive, because there can be extra copies which e�ect memory consumption.
The two source patches can be scaled by a factor for the addition. The function
is smart enough to detect the case that the patches are exactly the same but
the global arrays are di�erent in shapes. It handles the case as if for the arrays
were identically distributed, thus the performance will not su�er.

The matrix multiplication is the only operation on array patches that is
restricted to the two dimensional domain, because of its nature. It works for
double and double complex data types. The prototype is

Fortran subroutine ga_matmul_patch(transa, transb,

alpha, beta, g_a, ailo, aihi,

ajlo, ajhi, g_b, bilo, bihi, bjlo,

bjhi, g_c, cilo, cihi, cjlo, cjhi)

C void GA_Matmul_patch(char *transa, char* transb,

void* alpha, void *beta, int g_a,

int ailo, int aihi, int ajlo, int ajhi,

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_transpose
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_transpose
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_add_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_add_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_add_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_matmul_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_matmul_patch

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 63

int g_b, int bilo, int bihi, int bjlo,

int bjhi, int g_c, int cilo, int cihi,

int cjlo, int cjhi)

C++ void GA::GlobalArray::matmulPatch(char *transa,

char* transb, void* alpha, void *beta,

const GlobalArray * g_a, int ailo,

int aihi, int ajlo, int ajhi, const

GlobalArray * g_b, int bilo, int bihi,

int bjlo, int bjhi, int cilo, int cihi,

int cjlo, int cjhi)

It performs

C[cilo:cihi,cjlo:cjhi] := alpha* AA[ailo:aihi,ajlo:ajhi] *

BB[bilo:bihi,bjlo:bjhi]) + beta*C[cilo:cihi,cjlo:cjhi]

where AA = op(A), BB = op(B), and op(X) is one of
op(X) = X or op(X) = X',
Valid values for transpose argument: 'n', 'N', 't', 'T'.
The dot operation computes the element-wise dot product of two (possibly

transposed) patches. It is implemented as three separate functions, correspond-
ing to integer, double precision and double complex data types. They are

n-DFortran integer function nga_idot_patch(g_a, ta,

alo, ahi, g_b, tb, blo, bhi)

double precision functionn ga_ddot_patch

(g_a, ta, alo, ahi, g_b, tb, blo, bhi)

double complex functionn ga_zdot_patch

(g_a, ta, alo, ahi, g_b, tb, blo, bhi)

2-DFortran integer function ga_idot_patch(g_a, ta, ailo, aihi,

ajlo, ailo, g_b, tb, bilo, bihi, bjlo, bjhi)

double precision function ga_ddot_patch(g_a, ta,

ailo, aihi, ajlo, ailo, g_b, tb, bilo, bihi,

bjlo, bjhi)

double complex function ga_zdot_patch(g_a, ta, ailo,

aihi, ajlo, ailo, g_b, tb, bilo, bihi, bjlo, bjhi)

C Integer NGA_Idot_patch(int g_a, char* ta, int alo[],

int ahi[], int g_b, char* tb, int blo[],

int bhi[])

double NGA_Ddot_patch(int g_a, char* ta, int alo[],

int ahi[], int g_b, char* tb, int blo[],

int bhi[])

DoubleComplex NGA_Zdot_patch(int g_a, char* ta,

int alo[], int ahi[], int g_b, char* tb,

int blo[], int bhi[])

C++ IntegerGA::GlobalArray::idotPatch(const GA::GlobalArray*

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_ddot_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_zdot_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_ddot_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_zdot_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_dot_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_dot_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_dot_patch

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 64

g_a, char* ta, int alo[], int ahi[], char*

tb, int blo[], int bhi[])

double GA::GlobalArray::ddotPatch(const GA::GlobalArray*

g_a, char* ta, int alo[], int ahi[], char* tb,

int blo[], int bhi[])

DoubleComplex GA::GlobalArray::zdotPatch

(const GA::GlobalArray* g_a, char* ta, int alo[],

int ahi[], char* tb, int blo[], int bhi[])

The patches should be of the same data types and have the same number of
elements. Like the array addition, if the source patches have di�erent distri-
butions/shapes, or it requires transpose, the operation would be less e�cient,
because there could be extra copies and/or memory consumption.

6.2.3 Element-wise operations

These operations work on individual array elements rather than arrays as ma-
trices in the sense of linear algebra operations. For example multiplication of
elements stored in arrays is a completely di�erent operation than matrix multi-
plication.

Fortran subroutine ga_abs_value(g_a)

C void GA_Abs_value(int g_a)

C++ void GA::GlobalArray::absValue(int g_a)

Take element-wise absolute value of the array.

Fortran subroutine ga_abs_value_patch(g_a, lo, hi)

C void GA_Abs_value_patch(int g_a, int lo[], int hi[])

C++ void GA::GlobalArray::absValuePatch

(int lo[], int hi[])

Take element-wise absolute value of the patch.

Fortran subroutine ga_add_constant(g_a, alpha)

C void GA_Add_constant(int g_a, void* alpha)

C++ void GA::GlobalArray::addConstant(void* alpha)

Add the contant pointed by alpha to each element of the array.

Fortran subroutine ga_add_constant_patch(g_a, lo, hi, alpha)

C void GA_Add_constant_patch(int g_a, int lo[],

int hi[], void*alpha)

C++ void GA::GlobalArray::addConstantPatch(void* alpha)

Add the contant pointed by alpha to each element of the patch.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_abs_value
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_abs_value
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_abs_value_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_abs_value_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_add_constant
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_add_constant
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_add_constant_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_add_constant_patch

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 65

Fortran subroutine ga_recip(g_a)

C void GA_Recip(int g_a)

C++ void GA::GlobalArray::recip()

Take element-wise reciprocal of the array.

Fortran subroutine ga_recip_patch(g_a, lo, hi)

C void GA_Recip_patch(int g_a, int lo[], int hi[])

C++ void GA::GlobalArray::recipPatch(int lo[], int hi[])

Take element-wise reciprocal of the patch.

Fortran subroutine ga_elem_multiply(g_a, g_b, g_c)

C void GA_Elem_multiply(int g_a, int g_b, int g_c)

C++ void GA::GlobalArray::elemMultiply(const

GA::GlobalArray * g_a,

const GA::GlobalArray * g_b)

Computes the element-wise product of the two arrays which must be of the
same types and same number of elements. For two-dimensional arrays,

c(i, j) = a(i,j)*b(i,j)
The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_multiply__patch(g_a, alo,

ahi, g_b, blo, bhi, g_c, clo,chi)

C void GA_Elem_multiply__patch(int g_a, int alo[],

int ahi[], int g_b, int blo[], int bhi[],

int g_c, int clo[], int chi[])

C++ void GA::GlobalArray::elemMultiplyPatch

(const GA::GlobalArray * g_a, int alo[],

int ahi[], const GA::GlobalArray * g_b,

int blo[], int bhi[], int clo[], int chi[])

Computes the element-wise product of the two patches which must be of the
same types and same number of elements. For two-dimensional arrays,

c(i, j) = a(i,j)*b(i,j)
The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_divide(g_a, g_b, g_c)

C void GA_Elem_divide(Integer g_a, Integer

g_b, Integer g_c)

C++ void GA::GlobalArray::elemDivide(const GA::GlobalArray *

g_a, const GA::GlobalArray * g_b)

Computes the element-wise quotient of the two arrays which must be of the
same types and same number of elements. For two-dimensional arrays,

c(i, j) = a(i,j)/b(i,j)
The result (c) may replace one of the input arrays (a/b). If one of the

elements of array g_b is zero, the quotient for the element of g_c will be set to
GA_NEGATIVE_INFINITY.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_recip
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_recip
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_recip_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_recip_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_elem_multiply
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_elem_multiply
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_elem_multiply_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_elem_multiply_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_elem_divide
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_elem_divide

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 66

Fortran subroutine ga_elem_divide__patch(g_a, alo,

ahi, g_b, blo, bhi, g_c, clo, chi)

C void GA_Elem_divide__patch(int g_a, int alo[],

int ahi[], int g_b, int blo[], int bhi[],

int g_c, int clo[], int chi[])

C++ void GA::GlobalArray::elemDividePatch(const

GA::GlobalArray * g_a, int alo[],

int ahi[], const GA::GlobalArray * g_b,

int blo[], int bhi[], int clo[], int chi[])

Computes the element-wise quotient of the two patches which must be of the
same types and same number of elements. For two-dimensional arrays,

c(i, j) = a(i,j)/b(i,j)
The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_maximum(g_a, g_b, g_c)

C void GA_Elem_maximum(Integer g_a, Integer g_b,

Integer g_c)

C++ void GA::GlobalArray::elemMaximum(const GA::GlobalArray

* g_a, const GA::GlobalArray * g_b)

Computes the element-wise maximum of the two arrays which must be of the
same types and same number of elements. For two dimensional arrays,

c(i, j) = max{a(i,j), b(i,j)}
The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_maximum__patch(g_a, alo,

ahi, g_b, blo, bhi, g_c, clo, chi)

C void GA_Elem_maximum__patch(int g_a, int alo[],

int ahi[], int g_b, int blo[], int bhi[],

int g_c, int clo[], int chi[])

C++ void GA::GlobalArray::elemMaximumPatch(const

GA::GlobalArray * g_a, int alo[], int ahi[],

const GA::GlobalArray * g_b, int blo[],

int bhi[], int clo[], int chi[])

Computes the element-wise maximum of the two patches which must be of the
same types and same number of elements. For two-dimensional of noncomplex
arrays,

c(i, j) = max{a(i,j), b(i,j)}
If the data type is complex, then c(i, j).real = max{ |a(i,j)|, |b(i,j)|} while

c(i,j).image = 0.
The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_minimum(g_a, g_b, g_c)

C void GA_Elem_minimum(Integer g_a, Integer g_b, Integer g_c);

C++ void GA::GlobalArray::elemMinimum(const GA::GlobalArray *

g_a, const GA::GlobalArray * g_b)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_elem_divide_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_elem_divide_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_elem_maximum
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_elem_maximum
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_elem_maximum_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_elem_maximum_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_elem_minimum
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_elem_minimum

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 67

Computes the element-wise minimum of the two arrays which must be of the
same types and same number of elements. For two dimensional arrays,

c(i, j) = min{a(i,j), b(i,j)}
The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_minimum__patch(g_a, alo, ahi,

g_b, blo, bhi, g_c, clo, chi)

C void GA_Elem_minimum__patch(int g_a, int alo[],

int ahi[], int g_b, int blo[], int bhi[],

int g_c, int clo[], int chi[])

C++ void GA::GlobalArray::elemMinimumPatch

(const GA::GlobalArray * g_a, int alo[],

int ahi[], const GA::GlobalArray * g_b,

int blo[], int bhi[], int clo[], int chi[])

Computes the element-wise minimum of the two patches which must be of the
same types and same number of elements. For two-dimensional of noncomplex
arrays,

c(i, j) = min{a(i,j), b(i,j)}
If the data type is complex, then
c(i, j).real = min{ |a(i,j)|, |b(i,j)|} while c(i,j).image = 0.
The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_shift_diagonal(g_a, c)

C void GA_Shift_diagonal(int g_a, void *c)

C++ void GA::GlobalArray::shiftDiagonal(void *c)

Adds this constant to the diagonal elements of the matrix.

Fortran subroutine ga_set_diagonal(g_a, g_v)

C void GA_Set_diagonal(int g_a, int g_v)

C++ void GA::GlobalArray::setDiagonal

(const GA::GlobalArray * g_v)

Sets the diagonal elements of this matrix g_a with the elements of the vector
g_v.

Fortran subroutine ga_zero_diagonal(g_a)

C void GA_Zero_diagonal(int g_a)

C++ void GA::GlobalArray::zeroDiagonal()

Sets the diagonal elements of this matrix g_a with zeros.

Fortran subroutine ga_add_diagonal(g_a, g_v)

C void GA_Add_diagonal(int g_a, int g_v)

C++ void GA::GlobalArray::addDiagonal(const

GA::GlobalArray * g_v)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_elem_minimum_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_elem_minimum_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_shift_diagonal
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_shift_diagonal
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_set_diagonal
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_set_diagonal
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_zero_diagonal
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_zero_diagonal
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_add_diagonal
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_add_diagonal

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 68

Adds the elements of the vector g_v to the diagonal of this matrix g_a.

Fortran subroutine ga_get_diag(g_a, g_v)

C void GA_Get_diag(int g_a, int g_v)

C++ void GA::GlobalArray::getDiagonal

(const GA::GlobalArray * g_v)

Inserts the diagonal elements of this matrix g_a into the vector g_v.

Fortran subroutine ga_scale_rows(g_a, g_v)

C void GA_Scale_rows(int g_a, int g_v)

C++ void GA::GlobalArray::scaleRows

(const GA::GlobalArray * g_v)

Scales the rows of this matrix g_a using the vector g_v.

Fortran subroutine ga_scale_cols(g_a, g_v)

C void GA_Scale_cols(int g_a, int g_v)

C++ void GA::GlobalArray::scaleCols

(const GA::GlobalArray * g_v)

Scales the columns of this matrix g_a using the vector g_v.

Fortran subroutine ga_norm1(g_a, nm)

C void GA_Norm1(int g_a, double *nm)

C++ void GA::GlobalArray::norm1(double *nm)

Computes the 1-norm of the matrix or vector g_a.

Fortran subroutine ga_norm_infinity(g_a, nm)

C void GA_Norm_infinity(int g_a, double *nm)

C++ void GA::GlobalArray::normInfinity(double *nm)

Computes the 1-norm of the matrix or vector g_a.

Fortran subroutine ga_median(g_a, g_b, g_c, g_m)

C void GA_Median(int g_a, int g_b, int g_c, int g_m)

C++ void GA::GlobalArray::median(const GA::GlobalArray

* g_a, const GA::GlobalArray

* g_b, const GA::GlobalArray * g_c)

Computes the componentwise Median of three arrays g_a, g_b, and g_c, and
stores the result in this array g_m. The result (m) may replace one of the input
arrays (a/b/c).

Fortran subroutine ga_median_patch(g_a, alo, ahi, g_b,

blo, bhi, g_c, clo, chi, g_m,mlo, mhi)

C void GA_Median_patch(int g_a, int alo[], int ahi[],

int g_b, int blo[], int bhi[], int g_c,

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_get_diag
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_get_diag
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_scale_rows
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_scale_rows
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_scale_cols
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_scale_cols
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_norm1
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_norm1
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_norm_infinity
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_norm_infinity
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_median
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_median
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_median_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_median_patch

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 69

int clo[], int chi[], int g_m, int mlo[],

int mhi[])

C++ void GA::GlobalArray::medianPatch(const GA::GlobalArray

* g_a, int alo[], int ahi[], const

GA::GlobalArray * g_b, int blo[], int bhi[],

const GA::GlobalArray * g_c, int clo[],

int chi[], int mlo[],int mhi[])

Computes the componentwise Median of three patches g_a, g_b, and g_c, and
stores the result in this patch g_m. The result (m) may replace one of the input
patches (a/b/c).

Fortran subroutine ga_step_max(g_a, g_b, step)

C void GA_Step_max(int g_a, int g_b, double *step)

C++ void GA::GlobalArray::stepMax(const

GA::GlobalArray *g_a, double *step)

Calculates the largest multiple of a vector g_b that can be added to this vector
g_a while keeping each element of this vector nonnegative.

Fortran subroutine ga_step_max2(g_xx, g_vv, g_xxll, g_xxuu, step2)

C void GA_Step_max2(int g_xx, int g_vv, int g_xxll,

int g_xxuu, double *step2)

C++ void GA::GlobalArray::stepMax2(const GA::GlobalArray *g_vv,

const GA::GlobalArray *g_xxll,

const GA::GlobalArray *g_xxuu, double *step2)

Calculates the largest step size that should be used in a projected bound line
search.

Fortran subroutine ga_step_max_patch(g_a, alo, ahi, g_b, blo,

bhi, step)

C void GA_Step_max_patch(int g_a, int *alo, int *ahi,

int g_b, int *blo, int *bhi, double *step)

C++ void GA::GlobalArray::stepMaxPatch(int *alo,

int *ahi, const GA::GlobalArray *

g_b, int *blo, int *bhi, double *step)

Calculates the largest multiple of a vector g_b that can be added to this vector
g_a while keeping each element of this vector nonnegative.

Fortran subroutine ga_step_max2_patch(g_xx, xxlo, xxhi,

g_vv,vvlo, vvhi, g_xxll, xxlllo, xxllhi,

g_xxuu, xxuulo, xxuuhi, step2)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_step_max
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_step_max
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_step_max2
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_step_max2
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_step_max_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_step_max_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_step_max2_patch

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 70

C void GA_Step_max2_patch(int g_xx, int *xxlo,

int *xxhi,

int g_vv, int *vvlo, int *vvhi, int g_xxll,

int *xxlllo, int *xxllhi, int g_xxuu,

int *xxuulo, int *xxuuhi, double *step2)

C++ void GA::GlobalArray::stepMax2Patch(int *xxlo, int *xxhi,

const GA::GlobalArray * g_vv, int *vvlo,

int *vvhi,

const GA::GlobalArray * g_xxll,

int *xxlllo, int *xxllhi,

const GA::GlobalArray * g_xxuu, int *xxuulo,

int *xxuuhi, double *step2)

Calculates the largest step size that should be used in a projected bound line
search.

6.3 Interfaces to Third Party Software Packages

There are many existing software packages designed for solving engineering prob-
lems. They are specialized in one or two problem domains, such as solving linear
systems, eigen-vectors, and di�erential equations, etc. Global Arrays provide
interfaces to several of these packages.

6.3.1 Scalapack

Scalapack is a well known software library for linear algebra computations on
distributed memory computers. Global Arrays uses this library to solve systems
of linear equations and also to invert matrices.

The function

Fortran integer function ga_solve(g_a, g_b)

C int GA_Solve(int g_a, int g_b)

C++ int GA::GlobalArray::solve(const GA::GlobalArray * g_a)

solves a system of linear equations A * X = B. It �rst will call the Cholesky
factorization routine and, if successful, will solve the system with the Cholesky
solver. If Cholesky is not able to factorizeA, then it will call the LU factorization
routine and will solve the system with forward/backward substitution. On exit
B will contain the solution X.

The function

Fortran integer function ga_llt_solve(g_a, g_b)

C int GA_Llt_solve(int g_a, int g_b)

C++ int GA::GlobalArray::lltSolve(const GA::GlobalArray * g_a)

http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_step_max2_patch
http://www.netlib.org/scalapack/index.html
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_solve
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_solve
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_llt_solve
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_llt_solve

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 71

also solves a system of linear equations A * X = B, using the Cholesky factoriza-
tion of an NxN double precision symmetric positive de�nite matrix A (handle
g_a). On successful exit B will contain the solution X.

The function

Fortran subroutine ga_lu_solve(trans, g_a, g_b)

C void GA_Lu_solve(char trans, int g_a, int g_b)

C++ void GA::GlobalArray::luSolve(char trans, const

GA::GlobalArray * g_a)

solves the system of linear equations op(A)X = B based on the LU factorization.
op(A) = A or A' depending on the parameter trans. Matrix A is a general real
matrix. Matrix B contains possibly multiple rhs vectors. The array associated
with the handle g_b is overwritten by the solution matrix X.

The function

Fortran integer function ga_spd_invert(g_a)

C int GA_Spd_invert(int g_a)

C++ int GA::GlobalArray::spdInvert()

computes the inverse of a double precision matrix using the Cholesky factor-
ization of a NxN double precision symmetric positive de�nite matrix A stored
in the global array represented by g_a. On successful exit, A will contain the
inverse.

6.3.2 PeIGS

The PeIGS library contains subroutines for solving standard and generalized
real symmetric eigensystems. All eigenvalues and eigenvectors can be computed.
The library is implemented using a message-passing model and is portable across
many platforms. For more information and availability send a message to fan-
ngi@ornl.gov. Global Arrays use this library to solve eigenvalue problems.

The function

Fortran subroutine ga_diag(ga_diag(g_a, g_s, g_v, eval)

C void GA_Diag(int g_a, int g_s, int g_v, void *eval)

C++ void GA::GlobalArray::diag (const GA::GlobalArray*g_s,

const GA::GlobalArray* g_v, void *eval)

solves the generalized eigenvalue problem returning all eigenvectors and values
in ascending order. The input matrices are not overwritten or destroyed.

The function

Fortran subroutine ga_diag_reuse (control, g_a, g_s, g_v, eval)

C void GA_Diag_reuse (int control, int g_a, int g_s,

int g_v,void *eval)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_lu_solve
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_lu_solve
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_spd_invert
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_spd_invert
mailto:fanngi@ornl.gov
mailto:fanngi@ornl.gov
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_diag
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_diag
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_diag_reuse
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_diag_reuse

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 72

C++ void GA::GlobalArray::diagReuse (int control, const

GA::GlobalArray* g_s,

const GA::GlobalArray*g_v, void *eval)

solves the generalized eigen-value problem returning all eigenvectors and values
in ascending order. Recommended for REPEATED calls if g_s is unchanged.

The function

Fortran subroutine ga_diag_std(g_a, g_v, eval)

C void GA_Diag_std(int g_a, int g_v, void *eval)

C++ void GA::GlobalArray::diagStd(const GA::GlobalArray*

g_v, void *eval)

solves the standard (non-generalized) eigenvalue problem returning all eigenvec-
tors and values in the ascending order. The input matrix is neither overwritten
nor destroyed.

6.3.3 Interoperability with Others

Global Arrays are interoperable with several other libraries, but do not provide
direct interfaces for them. For example, one can make calls to and link with
these libraries:

PETSc (the Portable, Extensible Toolkit for Scienti�c Computation) is de-
veloped by Argonne National Laboratory. PETSc is a suite of data structures
and routines for the scalable (parallel) solution of scienti�c applications modeled
by partial di�erential equations. It employs the MPI standard for all message-
passing communication, and is written in a data-structure-neutral manner to
enable easy reuse and �exibility. Here are the instructionsfor using PETSc with
GA.

CUMULVS(Collaborative User Migration User Library for Visualization and
Steering) is developed by the Oak Ridge National Laboratory. CUMULVS is
a software framework that enables programmers to incorporate fault-tolerance,
interactive visualization and computational steering into existing parallel pro-
grams. Here are theinstructions for using CUMULVS with GA.

6.4 Synchronization Control in Collective Oper-
ations

GA collective array operations are implemented by exploiting locality infor-
mation to minimize or even completely avoid interprocessor communication or
data copying. Before each processor accesses its own portion of the GA data
we must assure that the data is in a consistent state. That means that there
are no outstanding communication operations targeting that given global array
portion pending while the data owner is accessing it. To accomplish that the
GA collective array operations have implicit synchronization points: at the be-
ginning and at the end of the operation. However, in many cases when collective

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_diag_std
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_diag_std
http://www.mcs.anl.gov/petsc/petsc-as/
http://www.anl.gov/
http://www.emsl.pnl.gov/docs/global/petsc.html
http://www.csm.ornl.gov/cs/cumulvs.html
http://www.ornl.gov/
http://www.emsl.pnl.gov/docs/global/cumulvs.html

CHAPTER 6. COLLECTIVE ARRAY OPERATIONS 73

array operations are called back-to-back or if the user does an explicit sync just
before a collective array operation, some of the internal synchronization points
could be merged or even removed if user can guarantee that the global array
data is in the consistent state. The library o�ers a call for the user to elimi-
nate the redundant synchronization points based on his/her knowledge of the
application.

The function

Fortran subroutine ga_mask_sync(prior_sync_mask,post_sync_mask)

C void GA_Mask_sync(int prior_sync_mask,int post_sync_mask)

C++ void GA::GlobalArray::maskSync(int prior_sync_mask,

int post_sync_mask)

This operation should be used with a lot of care and only when the application
code has been debugged and the user wishes to tune its performance. Making
a call to this function with prior_sync_mask parameter set to false disables
the synchronization done at the beginning of �rst collective array operation
called after a call to this function. Similarly, making a call to this function
by setting the post_sync_mask parameter to false disables the synchronization
done at the ending of the �rst collective array operation called after a call to
this function.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_mask_sync
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_mask_sync

Chapter 7

Utility Operations

74

CHAPTER 7. UTILITY OPERATIONS 75

Global Arrays includes some utility functions to provide process, data lo-
cality, information, check the memory availability, etc. There are also several
handy functions that print array distribution information, or summarize array
usage information.

7.1 Locality Information

For a given global array element, or a given patch, sometimes it is necessary to
�nd out who owns this element or patch. The function

n-DFortran logical function nga_locate(g_a, subscript, owner)

2-DFortran logical function ga_locate(g_a, i, j, owner)

C int NGA_Locate(int g_a, int subscript[])

C++ int GA::GlobalArray::locate(int subscript[])

tells who (process id) owns the elements de�ned by the array subscripts.
The function

n-DFortran logical function nga_locate_region(g_a, lo,

hi, map,proclist, np)

2-DFortran logical function ga_locate_region(g_a, ilo, ihi,

jlo,jhi, map, np)

C int NGA_Locate_region(int g_a, int lo[],

int hi[],int *map[], int procs[])

C++ int GA::GlobalArray::locateRegion(int lo[],

int hi[],int *map[], int procs[])

returns a list of GA process IDs that 'own' the patch.
The Global Arrays support an abstraction of a distributed array object. This

object is represented by an integer handle. A process can access its portion of
the data in the global array. To do this, the following steps need to be taken:

1. �nd the distribution of an array, which part of the data the calling process
own

2. access the data

3. operate on the date: read/write

4. release the access to the data

The function

n-DFortran subroutine nga_distribution(g_a, iproc, lo, hi)

2-DFortran subroutine ga_distribution(g_a, iproc, ilo, ihi, jlo, jhi)

C void NGA_Distribution(int g_a, int iproc, int lo[],

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_locate
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_locate
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_locate
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_locate_region
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_locate_region
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_locate_region
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_distribute
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_distribute
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_distribute

CHAPTER 7. UTILITY OPERATIONS 76

int hi[])

C++ void GA::GlobalArray::distribution(int iproc,

int lo[], int hi[])

�nds out the range of the global array g_a that process iproc owns and iproc

can be any valid process ID.
The function

n-DFortran subroutine nga_access(g_a, lo, hi, index, ld)

2-DFortran subroutine ga_access(g_a, ilo, ihi, jlo, jhi, index, ld)

C void NGA_Access(int g_a, int lo[], int hi[],

void *ptr, int ld[])

C++ void GA::GlobalArray::access(int lo[], int hi[],

void *ptr, int ld[])

provides access to local data in the speci�ed patch of the array owned by the
calling process. The C interface gives the pointer to the patch. The Fortran
interface gives the patch address as the index (distance) from the reference
address (the appropriate MA base addressing array).

The function

n-DFortran subroutine nga_release(g_a, lo, hi)

2-DFortran subroutine ga_release(g_a, ilo, ihi, jlo, jhi)

C void NGA_Release(int g_a, lo[], int hi[])

C++ void GA::GlobalArray::release(lo[], int hi[])

and

n-DFortran subroutine nga_release_update(g_a, lo, hi)

2-DFortran subroutine ga_release_update(g_a, ilo, ihi, jlo, jhi)

C void NGA_Release_update(int g_a, int lo[], int hi[])

C++ void GA::GlobalArray::releaseUpdate(int lo[], int hi[])

releases access to a global array. The former set is used when the data was read
only and the latter set is used when the data was accessed for writing.

Global Arrays also provide a function to compare distributions of two arrays.
It is

Fortran subroutine ga_compare_distr(g_a, g_b)

C void NGA_Compare_distr(int g_a, int g_b)

C++ void GA::GlobalArray::compareDistr(const

GA::GlobalArray * g_a)

The only method currently available for accessing the ghost cell data for global
arrays that have ghost cell data is to use the nga_access_ghosts funtion. This
function is similar to the nga_access function already described, except that
it returns an index (pointer) to the origin of the locally held patch of global

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_access
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_access
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_access
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_release
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_release
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_release
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_release_update
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_release_update
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_release_update
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_compare_distr
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_compare_distr

CHAPTER 7. UTILITY OPERATIONS 77

array data. This local patch includes the ghost cells so the index (pointer) will
be pointing to a ghost cell. The nga_access_ghosts function also returns the
physical dimensions of the local data patch, which includes the additional ghost
cells, so it is possible to access both the visible data of the global array and the
ghost cells using this information. The nga_access_ghosts functions have the
format

n-d Fortran subroutine nga_access_ghosts(g_a, dims, index, ld)

C void NGA_access_ghosts

(int g_a, int dims[],

void *ptr, int ld[])

C++ void GA::GlobalArray::accessGhosts(int dims[],

void *ptr, int ld[])

The array dims comes back with the dimensions of the local data patch, in-
cluding the ghost cells, for each dimension of the global array, ptr is an index
(pointer) identifying the beginning of the local data patch, and ld is any array of
leading dimensions fpr the local data patch, which also includes the ghost cells.
The array ld is actually redundant since the information in ld is also contained
in dims, but is included to maintain continuity with other GA functions.

7.1.1 Process Information

When developing a program, one needs to use charateristics of its parallel envi-
ronment: process ID, how many processes are working together and what their
IDs are, and what the topology of processes look like. To answer these questions,
the following functions can be used.

The function

Fortran integer function ga_nodeid()

C int GA_Nodeid()

C++ int GA::GAServices::nodeid()

returns the GA process ID of the current process, and the function

Fortran integer function ga_nnodes()

C int GA_Nnodes()

C++ int GA::GAServices::nodes()

tells the number of computing processes.
The function

Fortran subroutine ga_proc_topology(ga, proc, prow, pcol)

C void NGA_Proc_topology(int g_a, int proc,

int coordinates)

C++ void GA::GlobalArray::procTopology(int proc,

int coordinates)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_access_ghosts
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#nga_access_ghosts
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#nga_access_ghosts
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_nodeid
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_nodeid
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_nnodes
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_nnodes
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_proc_topology
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_proc_topology

CHAPTER 7. UTILITY OPERATIONS 78

determines the coordinates of the speci�ed processor in the virtual processor
grid corresponding to the distribution of array g_a.

Example: A global array is distributed on 9 processors. The processors are
numbered from 0 to 8 as shown in the following �gure. If one wants to �nd
out the coordinates of processor 7 in the virtual processor grid, by calling the
fuction ga_proc_topology, the coordinates of (2,1) will be returned.

7.1.2 Cluster Information

The following functions can be used to obtain information like number of nodes
that the program is running on, node ID of the process, and other cluster infor-
mation as discussed below:

The function

Fortran integer function ga_cluster_nnodes()

C int GA_Cluster_nnodes()

C++ int GA::GAServices::clusterNnodes()

returns the total number of nodes that the program is running on. On SMP
architectures, this will be less than or equal to the total number of processors.

The function

Fortran integer function ga_cluster_nodeid()

C int GA_Cluster_nodeid()

C++ int GA::GAServices::clusterNodeid()

returns the node ID of the process. On SMP architectures with more than one
processor per node, several processes may return the same node id.

The function

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_cluster_nnodes
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_cluster_nnodes
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_cluster_nodeid
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_cluster_nodeid

CHAPTER 7. UTILITY OPERATIONS 79

Fortran integer function ga_cluster_nprocs(inode)

C int GA_Cluster_nprocs(int inode)

C++ int GA::GAServices::clusterNprocs(int inode)

returns the number of processors available on node inode.
The function

Fortran integer function ga_cluster_procid(inode, iproc)

C int GA_Cluster_procid(int inode, int iproc)

C++ int GA::GAServices::clusterProcid(int inode, int iproc)

returns the processor id associated with node inode and the local processor id
iproc. If node inode has N processors, then the value of iproc lies between 0
and N-1.

Example: 2 nodes with 4 processors each. Say, there are 7 processes created.
Assume 4 processes on node 0 and 3 processes on node 1. In this case: number
of nodes=2, node id is either 0 or 1 (for example, nodeid of process 2 is 0),
number of processes in node 0 is 4 and node 1 is 3. The global rank of each
process is shown in the �gure and also the local rank (rank of the process within
the node.i.e., cluster_procid) is shown in the parenthesis.

7.2 Memory Availability

Even though the memory management does not have to be performed directly
by the user, Global Arrays provide functions to verify the memory availability.
Global Arrays provide the following information:

1. How much memory has been used by the allocated global arrays.

2. How much memory is left for allocation of new the global arrays.

3. Whether the memory in global arrays comes from the Memory Allocator
(MA).

4. Is there any limitation for the memory usage by the Global Arrays.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_cluster_nprocs
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_cluster_nprocs
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_cluster_procid
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_cluster_procid
http://www.emsl.pnl.gov/docs/parsoft/ma/MAapi.html
http://www.emsl.pnl.gov/docs/parsoft/ma/MAapi.html

CHAPTER 7. UTILITY OPERATIONS 80

The function

Fortran integer function ga_inquire_memory()

C size_t GA_Inquire_memory()

C++ size_t GA::GAServices::inquireMemory()

answers the �rst question. It returns the amount of memory (in bytes) used in
the allocated global arrays on the calling processor.

The function

Fortran integer function ga_memory_avail()

C size_t GA_Memory_avail()

C++ size_t GA::GAServices::memoryAvailable()

answers the second question. It returns the amount of memory (in bytes) left
for allocation of new global arrays on the calling processor.

Memory Allocator (MA) is a library of routines that comprises a dynamic
memory allocator for use by C, Fortran, or mixed-language applications. Fortran-
77 applications require such a library because the language does not support
dynamic memory allocation. C (and Fortran-90) applications can bene�t from
using MA instead of the ordinary malloc() and free() routines because of the
extra features MA provides. The function

Fortran logical function ga_uses_ma()

C int GA_Uses_ma()

C++ int GA::GAServices::usesMA()

tells whether the memory in Global Arrays comes from the Memory Allocator
(MA) or not.

The function

Fortran logical function ga_memory_limited()

C int GA_Memory_limited()

C++ int GA::GAServices::memoryLimited()

Indicates if a limit is set on memory usage in Global Arrays on the calling
processor.

7.3 Message-PassingWrappers to Reduce/Broadcast
Operations

Global Arrays provide convenient operations for broadcast/reduce regardless of
the message-passing library the process is running with.

The function

Fortran subroutine ga_brdcst(type, buf, lenbuf, root)

C void GA_Brdcst(void *buf, int lenbuf, int root)

C++ void GA::GAServices::brdcst(void *buf, int lenbuf, int root)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_inquire_memory
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_inquire_memory
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_memory_avail
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_memory_avail
http://www.emsl.pnl.gov/docs/parsoft/ma/MAapi.html
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_uses_ma
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_uses_ma
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_memory_limited
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_memory_limited
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_brdcst
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_brdcst

CHAPTER 7. UTILITY OPERATIONS 81

broadcasts from process root to all other processes a message bu�er of length
lenbuf.

The functions

Fortran subroutine ga_igop(type, x, n, op)

subroutine ga_dgop(type, x, n, op)

C void GA_Igop(long x[], int n, char *op)

void GA_Dgop(double x[], int n, char *op)

C++ void GA::GAServices::igop(long x[], int n, char *op)

void GA::GAServices::dgop(double x[], int n, char *op)

'sum' elements of X(1:N) (a vector present on each process) across all nodes
using the communicative operator op, The result is broadcasted to all nodes.
Supported operations include

+, *, Max, min, Absmax, absmin

The integer version also includes the bitwise OR operation.
These operations unlike ga_sync, do not include embedded ga_gence oper-

ations.

7.4 Others

There are some other useful functions in Global Arrays. One group is about
inquiring the array attributes. Another group is about printing the array or
part of the array.

7.4.1 Inquire

A global array is represented by a handle. Given a handle, one can get the array
information, such as the array name, memory used, array data type, and array
dimension information, with the help of the following functions.

The functions

n-D Fortran subroutine nga_inquire(g_a, type, ndim, dims)

2-D Fortran subroutine nga_inquire(g_a, type, dim1, dim2)

C void NGA_Inquire(int g_a, int *type, int

*ndim, int dims[])

C++ void GA::GlobalArray::inquire(int *type, int

*ndim, int dims[])

return the data type of the array, and also the dimensions of the array.
The function

Fortran subroutine ga_inquire_name(g_a, array_name)

C char* GA_Inquire_name(int g_a)

C++ char* GA::GlobalArray::inquireName()

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_igop
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_igop
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_igop
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_dgop
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_inquire
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_inquire
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_inquire
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_inquire_name
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_inquire_name

CHAPTER 7. UTILITY OPERATIONS 82

�nds out the name of the array.
One can also inquire the memory being used with ga_inquire_memory (dis-

cussed above).

7.4.2 Print

Global arrays provide functions to print

1. content of the global array

2. content of a patch of global array

3. the status of array operations

4. a summary of allocated arrays

The function

Fortran subroutine ga_print(g_a)

C void GA_Print(int g_a)

C++ void GA::GlobalArray::print()

prints the entire array to the standard output. The output is formatted.
A utility function is provided to print data in the patch, which is

Fortran subroutine nga_print_patch(g_a, lo, hi, pretty)

C void NGA_Print_patch(int g_a, int lo[],

int hi[], int pretty)

C++ void GA::GlobalArray::printPatch(int lo[],

int hi[], int pretty)

One can either specify a formatted output (set pretty to one) where the output
is formatted and rows/ columns are labeled, or (set pretty to zero) just dump
all the elements of this patch to the standard output without any formatting.

The function

Fortran subroutine ga_print_stats()

C void GA_Print_stats()

C++ void GA::GAServices::printStats()

prints the global statistics information about array operations for the calling
process, including

• number of calls to the GA create/duplicate, destroy, get, put, scatter,
gather, and read_and_inc operations

• total amount of data moved in the GA primitive operations

• amount of data moved in GA primitive operations to logically remote
locations

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_print
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_print
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_print_patch
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_print_patch
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_print_stats
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_print_stats

CHAPTER 7. UTILITY OPERATIONS 83

• maximum memory consumption in global arrays, the "high-water mark"

The function

Fortran subroutine ga_print_distribution(g_a)

C void GA_Print_distribution(int g_a)

C void GA::GlobalArray::printDistribution()

prints the global array distribution. It shows mapping array data to the pro-
cesses.

The function

Fortran subroutine ga_summarize(verbose)

C void GA_Summarize(int verbose)

C++ void GA::GAServices::summarize(int verbose)

prints info about allocated arrays. verbose can be either one or zero.

7.4.3 Miscellaneous

The function

Fortran subroutine ga_check_handle(g_a, string)

C void GA_Check_handle(int g_a, char *string)

C++ void GA::GlobalArray::checkHandle(char *string)

checks if the global array handle g_a represents a valid array. The string is
the message to be printed when the handle is invalid.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_print_distribution
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_print_distribution
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_summarize
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_summarize
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_check_handle
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_check_handle

Chapter 8

GA++: C++ Bindings for

Global Arrays

84

CHAPTER 8. GA++: C++ BINDINGS FOR GLOBAL ARRAYS 85

8.1 Overview

GA++ provides a C++ interface to global arrays (GA) libraries. The doxygen
documentation of GA++ is located here: http://www.emsl.pnl.gov/docs/global/ga++/index.html.
The GA C++ bindings are a layer built directly on top of the GA C bindings.
GA++ provides new names for the C bindings of GA functions (For example,
GA_Add_patch() is renamed as addPatch()).

8.2 GA++ Classes

All GA classes (GAServices, GlobalArray) are declared within the scope of GA
namespace.

Namespace issue: Although namespace is part of the ANSI C++ stan-
dard, not all C++ compilers support namespaces (A non-instantiable GA class
is provided for implementations using compilers without namespace). Note:
de�ne the variable _GA_USENAMESPACE_ as 0 in ga++.h if your compiler
does not support namespaces.

namespace GA {

class GAServices;

class GlobalArray;

};

The current implementation has no derived classes (no (virtual) inheritance),
templates, or exception handling. Eventually, more object oriented functionali-
ties will be added, and standard library facilities will be used without a�ecting
the performance.

8.3 Initialization and Termination:

GA namespace has the following static functions for initialization and termina-
tion of Global Arrays.

GA::Initialize(): Initialize Global Arrays, allocates and initializes internal
data structures in Global Arrays. This is a collective operation.

GA::Terminate(): Delete all active arrays and destroy internal data struc-
tures. This is a collective operation.

namespace GA { _GA_STATIC_ void Initialize(int argc, char *argv[],
size_t limit = 0); _GA_STATIC_ void Initialize(int argc, char *argv[], un-
signed long heapSize, unsigned long stackSize, int type, size_t limit = 0);
_GA_STATIC_ void Terminate(); };

Example:
#include <iostream.h> #include "ga++.h"
int main(int argc, char **argv) { GA::Initialize(argc, argv, 0); cout <�<

"Hello World\n"; GA::Terminate(); }

http://www.emsl.pnl.gov/docs/global/ga++/index.html

CHAPTER 8. GA++: C++ BINDINGS FOR GLOBAL ARRAYS 86

8.4 GAServices

GAServices class has member functions that does all the global operations (non-
array operations) like Process Information (number of processes, process id, ..),
Inter-process Synchronization (sync, lock, broadcast, reduce,..), etc,.

SERVICES Object: GA namespace has a global "SERVICES" object (of
type "GAServices"), which can be used to invoke the non-array operations. To
call the functions (for example, sync()), we invoke them on this SERVICES
object (for example, GA::SERVICES.sync()). As this object is in the global
address space, the functions can be invoked from anywhere inside the program
(provided the ga++.h is included in that �le/program).

8.5 Global Array

GlobalArray class has member functions that perform:
* Array operations * One-sided (get/put), * Collective array operations, *

Utility operations, etc,.

Chapter 9

Mirrored Arrays

87

CHAPTER 9. MIRRORED ARRAYS 88

9.1 Overview

Mirrored arrays use a hybrid approach to replicate data across cluster nodes
and distribute data within each node. It uses shared memory for caching la-
tency sensitive distributed data structures on Symmetric Multi-Processor nodes
of clusters connected with commodity networks as illustrated in Figure 9.1. The
user is responsible for managing consistency of the data cached within the mir-
rored arrays. Instead of applying mirroring to all distributed arrays, the user
can decide, depending on the nature of the algorithm and the communication
requirements (number and size of messages), which arrays can or should use
mirroring and which should be left fully distributed and accessed without the
shared memory cache.

This hybrid approach is particularly useful for problems where it is important
to solve a moderate sized problem many times, such as an ab initio molecular
dynamics simulation of a moderate size molecule. A single calculation of the
energy and forces that can be run in a few minutes may be suitable for a geom-
etry optimization, where a few tens of calculations are required, but is still too
long for a molecular dynamics trajectory, which can require tens of thousands
of separate evaluations. For these problems, it is still important to push scala-
bility to the point where single energy and force calculations can be performed
on the order of seconds. Similar concerns exist for problems involving Monte
Carlo sampling or sensitivity analysis where it is important to run calculations
quickly so that many samples can be taken.

Mirrored arrays di�er from traditional replicated data schemes in two ways.
First, mirrored arrays can be used in conjunction with distributed data and there
are simple operations that support conversion back and forth from mirrored to
distributed arrays. This allows developers maximum �exibility in incorporating
mirrored arrays into their algorithms. Second, mirrored arrays are distributed
within an SMP node (see the above �gure). For systems with a large number of
processors per node, e.g., 32 in the current generation IBM SP, this can result
in signi�cant distribution of the data. Even for systems with only 2 nodes per
processor, this will result in an immediate savings of 50% over a conventional
replicated data scheme.

The disadvantage of using mirrored arrays is that problems are limited in
size by what can �t onto a single SMP node. This can be partially o�set by the
fact that almost all array operations can be supported on both mirrored and
distributed arrays, so that it is easy to develop code that can switch between us-
ing mirrored arrays and conventional distributed arrays, depending on problem
size and the number of available processors.

9.2 Mirrored Array Operations

Fortran integer ga_pgroup_get_mirror()

C int ga_pgroup_get_mirror()

C++ int GA::GAServices::pgroupGetMirror()

http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_GET_MIRROR
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_GET_MIRROR

CHAPTER 9. MIRRORED ARRAYS 89

Figure 9.1: Example of a two-dimensional array fully distributed, SMPmirrored,
and replicated on two 4-way SMP cluster nodes.

This function returns a handle to the mirrored processor list, which can then be
used to create a mirrored global array using one of the NGA_Create_*_con�g
calls.

Fortran integer ga_merge_mirrored(g_a)

C int GA_Merge_mirrored(int g_a)

C++ int GA::GlobalArray::mergeMirrored()

This subroutine merges mirrored arrays by adding the contents of each array
across nodes. The result is that the each mirrored copy of the array represented
by g_a is the sum of the individual arrays before the merge operation. After
the merge, all mirrored arrays are equal. This is a collective operation.

Fortran integer nga_merge_distr_patch(g_a, alo, ahi,

g_b, blo, bhi)

C int NGA_Merge_distr_patch(int g_a, int alo[],

int ahi[], int g_b, int blo[], int bhi[])

C++ int GA::GlobalArray::mergeDistrPatch(int alo[],

int ahi[], int g_b, int blo[], int bhi[])

This function merges all copies of a patch of a mirrored array (g_a) into a patch
in a distributed array (g_b). This is same as GA_merge_mirrored, except, this
function is operated on a patch rather than the whole array. This is a collective
operation.

Fortran integer ga_is_mirrored(g_a)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_MERGE_MIRRORED
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_MERGE_MIRRORED
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_MERGE_DISTR_PATCH
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_MERGE_DISTR_PATCH
http://www.emsl.pnl.gov/docs/global/ga_ops.html#ga_is_mirrored

CHAPTER 9. MIRRORED ARRAYS 90

C int GA_Is_mirrored(int g_a)

C++ int GA::GlobalArray::isMirrored()

This subroutine checks if the array is mirrored array or not. Returns 1 if it is a
mirrored array, else it returns 0. This is a local operation.

http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#ga_is_mirrored

Chapter 10

Processor Groups

91

CHAPTER 10. PROCESSOR GROUPS 92

10.1 Overview

The Global Arrays toolkit has recently been extended to support global arrays
de�ned on processor groups. The processor groups in GA programs follow the
MPI approach. The MPI processor groups can be used in GA programs. How-
ever, since the MPI standard does not support fault tolerance, GA provides a
set of APIs for process group managment which o�ers some opportunities for
supporting environments with hardware faults.

In general, processor groups allow the programmer to subdivide the domain
containing the complete set of processors (�the world group�) into subsets of pro-
cessors that can act more or less independently of one another. Global arrays
that are created on processor groups are only distributed amongst the proces-
sors in the group and not on all processors in the system. Collective operations
executed on speci�c groups are also restricted to processors in the group and do
not require any action from processors outside the group. A simple example is
a synchronization operation. If the synchronization operation is executed on a
group that is a subgroup of the world group, then only those processors in the
subgroup are blocked until completion of the synchronization operation. Pro-
cessors outside the subgroup can continue their operations without interruption.

The Global Arrays toolkit contains a collection of library calls that can be
used to explicitly create groups, assign speci�c groups to global arrays, and
execute global operations on groups. There is also a mechanism for setting the
�default� group for the calculation. This is a powerful way of converting large
amounts of parallel code that has already been written using the Global Arrays
library to run as a subroutine on a processor group. Normally, the default group
for a parallel calculation is the world group, but a call is available that can be
used to change the default group to something else. This call must be executed
by all processors in the subgroup. Furthermore, although it is not required, it is
probably a very good idea to make sure that the default groups for all processors
in the system (i.e., all processors contained in the original world group) represent
a complete non-overlapping covering of the original world group (see �gure).
Once the default group has been set, all operations are implicitly assumed to
occur on the default processor group unless explicitly stated otherwise. Global
Arrays are only created on the default processor group and global operations,
such as synchronizations, broadcasts, and other operations, are restricted to the
default group. Inquiry functions, such as the number of nodes and the node
ID, return values relative to the default processor group. Thus, a call to the
ga_nodeid function will return a value of 0 for each processor designated as the
zero processor within each default group. The number of processors returning
0 will be equal to the number of default groups (assuming the complete non-
overlapping coverage suggested above is implemented).

CHAPTER 10. PROCESSOR GROUPS 93

Original set of 16 processors decomposed into 3 non-overlapping
groups.

At present there are not many function calls that support operations between
groups. The only calls that can be used to copy data from one group to another
are the nga_copy and nga_copy_patch calls. These can be used to copy global
arrays between two groups, provided that one group is completely contained
in the other (this will always be the case if one of the groups is the world
group). These commands will work correctly as long as they are executed only by
processors contained in the smaller group. The nga_put and nga_get commands
can also be used to communicate between Global Arrays on di�erent groups
(using an intermediate bu�er), provided that the two groups share at least one
processor (again, this will always be the case if one group is the world group).

The new functions included in the Global Arrays library are described below.

10.2 Creating New Groups

Fortran integer function ga_pgroup_create(list, size)

C int GA_Pgroup_create(int *list, int size)

This call can be used to create a processor group of size size containing the
processors in the array list. This call must be executed on all processors in
the group. It returns an integer handle (for the processors group) that can be
used to reference the processor group in other library calls.

Assigning groups:

Fortran subroutine ga_set_pgroup(g_a, p_handle)

C void GA_Set_pgroup(int g_a, int p_handle)

This call can be used to assign the processor group p_handle to a global array
handle g_a that has been previously created using the ga_create_handle call.
The processor group associated with a global array can also be set by creating
the global array with one of the nga_create_XXX_config calls.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_CREATE
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_CREATE
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_SET_PGROUP
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_SET_PGROUP

CHAPTER 10. PROCESSOR GROUPS 94

10.3 Setting the Default Group

Fortran subroutine ga_pgroup_set_default(p_handle)

C void GA_Pgroup_set_default(int p_handle)

This call can be used to set the default group to something besides the world
group. This call must be made on all processors contained in the group repre-
sented by p_handle. Once the default group has been set, all operations are
restricted to the default group unless explicitly stated otherwise.

10.4 Inquiry functions

Fortran integer function ga_pgroup_nnodes(p_handle)

C int GA_Pgroup_nnodes(int p_handle)

Fortran integer function ga_pgroup_nodeid(p_handle)

C int GA_Pgroup_nodeid(int p_handle)

These functions can be used to access information about the group. The
ga_pgroup_nnodes function returns the number of processors in the group spec-
i�ed by the handle p_handle, ga_pgroup_nodeid returns the local node ID of
the processor within the group.

Fortran integer function ga_pgroup_get_default()

C int GA_Pgroup_get_default()

Fortran integer function ga_pgroup_get_mirror()

C int GA_Pgroup_get_mirror()

Fortran integer function ga_pgroup_get_world()

C int GA_Pgroup_get_world()

These functions can be used to get the handles for some standard groups at any
point in the program. This is particularly useful for gaining access to the world
group if the default group has been reset to a subgroup and also for gaining
access to the handle for the mirror group (see section on mirrored arrays).
Note that the mirror group is actually a group de�ned on the complete set of
processors.

10.5 Collective operations on groups

Fortran subroutine ga_pgroup_sync(p_handle)

C void ga_pgroup_sync(p_handle)

Fortran subroutine ga_pgroup_brdcst(p_handle,type,

buf,lenbuf,root)

C void GA_Pgroup_brdcst(int p_handle, void

*buf, root)

Fortran subroutine ga_pgroup_dgop(p_handle, type,

buf, lenbuf, op)

http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_SET_DEFAULT
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_SET_DEFAULT
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_NNODES
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_NNODES
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_NODEID
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_NODEID
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_GET_DEFAULT
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_GET_DEFAULT
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_GET_MIRROR
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_GET_MIRROR
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_GET_WORLD
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_GET_WORLD
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_SYNC
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_SYNC
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_BRDCST
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_BRDCST
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_DGOP

CHAPTER 10. PROCESSOR GROUPS 95

Fortran subroutine ga_pgroup_sgop(p_handle, type,

buf, lenbuf, op)

Fortran subroutine ga_pgroup_igop(p_handle, type,

buf, lenbuf, op)

C void GA_Pgroup_dgop(int p_handle, double

*buf, int lenbuf, char *op)

C void GA_Pgroup_fgop(int p_handle, float

*buf, int lenbuf, char *op)

C void GA_Pgroup_igop(int p_handle, int

*buf, int lenbuf, char *op)

C void GA_Pgroup_lgop(int p_handle, long

*buf, int lenbuf, char *op)

These operations are all identical to the standard global operations, the only
di�erence is that they have an extra argument that takes a group handle. The
action of these calls is restricted to the set of processors contained in the group
represented by p_handle. All processors in the group must call these subrou-
tines.

http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_SGOP
http://www.emsl.pnl.gov/docs/global/ga_ops.html#GA_PGROUP_IGOP
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_DGOP
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_FGOP
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_IGOP
http://www.emsl.pnl.gov/docs/global/c_nga_ops.html#GA_PGROUP_LGOP

Chapter 11

Sparse Data Operations

96

CHAPTER 11. SPARSE DATA OPERATIONS 97

The Global Arrays Toolkit contains several subroutines designed to support
operations on sparse data sets. Most sparse data objects, such as sparse ma-
trices, are generally described using a collection of 1-dimensional arrays, so the
operations discussed below are primarily focused on 1D Global Arrays. The
discussion of sparse data operations will begin by describing the sparse data
subroutines and then will show how they can be used by describing an algo-
rithm for doing a sparse matrix-dense vector multiply.

Fortran subroutine ga_patch_enum(g_a, lo, hi, istart, istride)

C void GA_Patch_enum(int g_a, int lo, int hi,

int istart, int istride)

This subroutine enumerates the elements of an array between elements lo and
hi starting with the value istart and incrementing each subsequent value by
istride. This is a collective operation. Some examples of its use are shown
below:

call ga_patch_enum(g_a, 1, n, 1, 1)

g_a: 1 2 3 4 5 6 7 8 9 10 ... n

call ga_zero(g_a)

call ga_patch_enum(g_a, 5, n, 7, 2)

g_a: 0 0 0 0 7 9 11 13 15 ...

Fortran subroutine ga_scan_copy(g_src, g_dest, g_mask, lo, hi)

C void GA_Scan_copy(int g_src, int g_dest, int g_mask,

int lo, int hi)

This subroutine does a segmented scan-copy of values in the source array g_src

into a destination array g_dest with segments de�ned by values in an inte-
ger mask array g_mask. The scan-copy operation is only applied to the range
between the lo and hi indices. The resulting destination array will contain
segments of consecutive elements with the same value. This is a collective oper-
ation. An example is shown below to illustrate the behavior of this operation.

call ga_scan_copy(g_src, g_dest, g_mask, 1, n)

g_mask: 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0

g_src: 5 8 7 3 2 6 9 7 3 4 8 2 3 6 9 10 7

g_dest: 5 5 5 5 5 6 6 7 7 7 8 8 8 8 9 10 10

Fortran subroutine ga_scan_add(g_src, g_dest, g_mask, lo, hi, excl)

C void GA_Scan_add(int g_src, int g_dest, int g_mask,

int lo, int hi, int excl)

This operation will add successive elements in a source vector g_src and put
the results in a destination vector g_dest. The addition will restart based on
the values of the integer mask vector g_mask. The scan is performed within
the range de�ned by the indices lo and hi. The excl �ag determines whether
the sum starts with the value in the source vector corresponding to the location
of a 1 in the mask vector (excl=0) or whether the �rst value is set equal to 0
(excl=1). Some examples of this operation are given below.

CHAPTER 11. SPARSE DATA OPERATIONS 98

call ga_scan_add(g_src, g_dest, g_mask, 1, n, 0)

g_mask: 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0

g_src: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g_dest: 1 3 6 10 15 21 7 15 9 19 30 12 25 39 15 16 33

call ga_scan_add(g_src, g_dest, g_mask, 1, n, 1)

g_mask: 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0

g_src: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g_dest: 0 1 3 6 10 15 0 7 0 9 19 0 12 25 0 0 16

Fortran subroutine ga_pack(g_src, g_dest, g_sbit, lo, hi, icount)

C void GA_Pack(int g_src, int g_dest,

int g_sbit, int lo, int hi, int icount)

The pack routine is designed to compress the values in the source vector g_src

into a smaller destination array g_dest based on the values in an integer mask
array g_mask. The values lo and hi denote the range of elements that should be
compressed and icount is a variable that on output lists the number of values
placed in the compressed array. This is a collective operation. An example of
its use is shown below.

call ga_pack(g_src, g_dest, g_mask, 1, n, icount)

g_mask: 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0

g_src: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g_dest: 1 6 8 11 15

icount: 5

Fortran subroutine ga_unpack(g_src, g_dest, g_sbit, lo, hi, icount)

C void GA_Pack(int g_src, int g_dest, int g_sbit,

int lo, int hi, int icount)

The unpack routine is designed to expand the values in the source vector g_src
into a larger destination array g_dest based on the values in an integer mask
array g_mask. The values lo and hi denote the range of elements that should
be expanded and icount is a variable that on output lists the number of values
placed in the uncompressed array. This is a collective operation. An example
of its use is shown below.

call ga_unpack(g_src, g_dest, g_mask, 1, n, icount)

g_mask: 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0

g_src: 1 6 8 11 15

g_dest: 1 0 0 0 0 6 0 8 0 0 11 0 0 0 15 0 0

icount: 5

11.1 Sparse Matrix-Vector Multiply Example:

The utility of these subroutines in actual applications is by no means obvious so
to illustrate their use, we describe a simple sparse matrix-vector multiply. The
starting point of this calculation is a compressed sparse row (CSR) matrix in

CHAPTER 11. SPARSE DATA OPERATIONS 99

which only the non-zero elements are stored. The CSR storage format for an
NxN matrix consists of three vectors. The �rst is a VALUES vector consisting of
all the non-zero values contained in the matrix, the second is a J-INDEX vector
that contains all the j indices of the values stored in the VALUES vector and
the third vector is the I-INDEX vector that contains N+1 entries and contains
the o�sets in the J-INDEX vector corresponding to each row in the matrix.
The last entry in I-INDEX corresponds to the total number of non-zero values
in the sparse matrix. The VALUES and J-INDEX vectors should contain the
same number of elements. Within each row the values are ordered by increasing
values of the j index and then by increasing values of the i index. An example
of a sparse matrix and its CSR representation is shown below.

0 0 1 3 0

2 0 0 0 5

0 7 0 9 0

3 0 4 0 5

0 2 0 0 6

The CSR representation of this matrix is

VALUES: 1 3 2 5 7 9 3 4 5 2 6

J-INDEX: 3 4 1 5 2 4 1 3 5 2 5

I-INDEX: 1 3 5 7 10 12

Note that each value in I-INDEX corresponds to the location of the �rst element
of the row in J-INDEX. The last element in I-INDEX equals one plust the total
number of non-zero elements in the matrix and is a useful number to have
available when performing sparse matrix operations. Depending on indexing
conventions, it might be more useful to set the last element equal to the number
of non-zero elements.

For a very large sparse matrix, it may be necessary to distribute the CSR
representation across multiple processors. This example assumes that the each
of the components of the CSR matrix is stored in a 1-dimensional Global Array.
To start the calculation, it is �rst necessary to create the distributed CSR ma-
trix. We assume that it is possible to assign the evaluation of individual rows
to individual processors. A simple way of starting is to divide up the number of
rows evenly between processors and have each processor evaluate all elements
of the rows assigned to it. These can then be stored in a local CSR format.
In this case, the I-INDEX vector contains only the number of rows assigned to
the processor. In the example shown above, assume that the matrix is divided
between three processors and that processes 0 and 1 have two rows each and
process 2 has one row. The layout on the three processes looks like

Process 0

VALUES: 1 3 2 5

J-INDEX: 3 4 1 5

I-INDEX: 1 3

CHAPTER 11. SPARSE DATA OPERATIONS 100

INC: 2 2

Process 1

VALUES: 7 9 3 4 5

J-INDEX: 2 4 1 3 5

I-INDEX: 1 3

INC: 2 3

Process 2

VALUES: 2 6

J-INDEX: 2 5

I-INDEX: 1

INC: 2

The local array INC contains the number of non-zero elements in each row.
The total number of non-zero elements in the matrix can be found by summing
the number of non-zero values on each process. This value can then be used
to create distributed VALUES and J-INDEX arrays containing the complete
CSR matrix. A distributed I-INDEX array can be constructed from knowledge
of the original matrix dimension N. In addition to Global Arrays representing
distributed versions of VALUES, J-INDEX, and I-INDEX, an integer Global
Array of length N+1 called SBIT is also needed. This array is initialized so that
the �rst element is 1 and the remaining elements are all zero. To create the
distributed array I-INDEX a temporary Global Array of length N+1 is created.
The following code fragment illustrates the construction of I-INDEX

lo = imin + 1 ! imin is lower index of i values on

! this processor

hi = imax + 1 ! imax is upper index of i values on

! this processor

if (me.eq.0) then

call nga_put(g_tmp, one, one, one, one)

endif

call nga_put(g_tmp, lo, hi, inc, one)

call ga_sync isize = n + 1

call ga_scan_add(g_tmp,g_i_index, g_sbit, isize, 0)

The variable ONE is an integer variable set equal to 1. This code fragment
results in a distributed array containing the elements of I-INDEX as described
above. Note that the N+1 element in g_i_index is equal to one plus the total
number of non-zero elements. The SBIT and TMP arrays can now be destroyed
as they are no longer needed.

To execute the actual sparse matrix-vector multiply, it is necessary to have a
second bit array MASK whose length is equal to the number of non-zero elements
in the sparse matrix and which has unit values at the locations corresponding
to the start of each row in the CSR and zeros everywhere else. This can be
constructed from the I-INDEX array in a fairly straightforward way using the
nga_scatter routine. The code fragment for constructing this is

CHAPTER 11. SPARSE DATA OPERATIONS 101

call ga_zero(g_mask)

call nga_distribution(g_i_index, me, lo, hi)

call nga_access(g_i_index, lo, hi, idx, ld)

ntot = hi � lo + 1 if (me.eq.ga_nnodes()-1) then

ntot = ntot � 1

endif

do i = 1, ntot

ones(i) = 1

end do

call nga_scatter(g_mask, ones, int_mb(idx), ntot)

call nga_release(g_i_index, lo, hi)

This code will create an appropriate mask array with 1's corresponding to the
start of each row in the VALUES and J-INDEX arrays. The last element in the
I-INDEX array contains the total number of non-zero elements and does not
correspond to an o�set location, hence the value of NTOT is decreased by 1 for
the last processor.

Finally, the remaining task is to copy the values of the j indices and the
matrix values from the local arrays into the corresponding Global Arrays. The
code fragment for this is

call nga_get(g_i_index, imin, imin, jmin, one)

call nga_get(g_i_index, imax+1, imax+1, jmax, one)

jmax = jmax � 1

call nga_put(g_j_index, jmin, jmax, jvalues, one)

call nga_put(g_values, jmin, jmax, values, one)

The value of jmax is decreased by 1 since this represents the start of the imax+1
row. The value for the last row works out correctly since we de�ned the N+1
element of I-INDEX to equal one plus the total number of non-zero elements in
the sparse matrix. At this point the matrix is completely stored in a set of dis-
tributed vectors representing a CSR storage format. An additional distributed
integer vector representing the bit mask for this matrix has also been created.

Having created a distributed sparse matrix in CSR format, the next step is
to construct a sparse matrix-dense vector multiply. This operation is outlined
schematically in Figure 11.1. The original sparse matrix-dense vector multiply
is shown in Figure 11.1(a). The �rst step, shown in Figure 11.1(b) is to express
the dense vector as a sparse matrix with the same pattern of non-zero entries as
the sparse matrix. Each row in this new matrix represents a copy of the original
vector, except that only the values corresponding to the non-zero values of the
original matrix are retained. The third step is to multiply the two matrices
together element-wise to get a new sparse matrix with the same pattern of non-
zero entries as the original sparse matrix. This is shown in Figure 11.1(c). The
�nal step, shown in Figure 11.1(d), is to sum across the rows in the product
matrix to get the values of the product vector.

The use of Global Array operations in implementing this operation is de-
scribed in more detail below. The original dense vector and �nal product vector

CHAPTER 11. SPARSE DATA OPERATIONS 102

(a)

(b)

(c)

(d)

Figure 11.1: Schematic representation of a numerical sparse matrix-dense vector
multiply.

CHAPTER 11. SPARSE DATA OPERATIONS 103

are assumed to be located in distributed 1D Global Arrays with handles g_b

and g_c, respectively. The �rst step in performing the multiply operation is to
create a 1D Global Array that is the same size as the original compressed matrix
VALUES array and has the same distribution across processors. Denoting the
handle of this array as g_tmp, it can be �lled with the following sequence of
operations

call nga_distribution(g_j_index, me, lo, hi)

call nga_access(g_j_index, lo, hi, idx, ld)

call nga_access(g_tmp, lo, hi, id_tmp, ld)

ld = hi � lo + 1

call nga_gather(g_b, dbl_mb(id_tmp),int_mb(idx),ld)

call nga_release(g_j_index, lo, hi)

call nga_release(g_tmp,lo,hi)

The �rst three lines �nd the location in memory of the local portions of the
J-VALUES vector and the g_tmp array. These should both correspond to the
same values of lo and hi. The nga_gather operation then copies the values of
g_b in the locations pointed to by the j values represented by the index idx into
the corresponding locations of the local portion of g_tmp. The remaining lines
release access to the local data. Although this operation can be expressed in
only a few lines of code, it is quite complicated in terms of how it manipulates
data and may be worth spending some additional time to understand how it
works.

The element-wise multiplication of the g_tmp and g_values arrays can be
trivially implemented with a single call to ga_elem_multiply(g_tmp, g_values,
g_tmp). Similarly, the sum across rows in the g_tmp array can be accomplished
by calling ga_scan_add(g_tmp, g_values, g_mask, one, ntot, 0), where ntot is
the total number of non-zero elements. At this point the values of the product
vector are located at the elements just before the locations indicated by the
g_mask array. To get these values back into an ordinary compressed vector,
the g_mask vector is shifted to the left by one place, using the following code
fragment

call nga_distribution (g_mask, me, lo, hi)

call nga_access(g_mask, lo, hi, idx, ld)

ld = hi-lo

isav = int_mb(idx)

do i = 1, ld

int_mb(idx + i � 1) = int_mb(idx + i)

end do

if (lo.eq.1) then

ldx = isize

else

idx = lo-1

endif call

nga_release(g_mask, lo, hi)

CHAPTER 11. SPARSE DATA OPERATIONS 104

call ga_sync

call nga_put(g_mask, idx, idx, isav, ld)

call g_sync

The results in g_tmp can now be packed into the �nal results vector g_c using
a single call to ga_pack(t_tmp, g_c, g_mask, one, ntot, icnt).

Chapter 12

Restricted Arrays

105

CHAPTER 12. RESTRICTED ARRAYS 106

12.1 Overview

The restricted arrays functionality is designed to provide users with further
options for how data is distributed among processors by allowing them to reduce
the total number of processors that actually have data and also by allowing users
to remap which data blocks go to which processors. There are two calls that
allow users to create restricted arrays; both must be used with the new interface
for creating arrays. This requires that users must �rst create an array handle
using the ga_create_handle call and then apply properties to the handle using
di�erent ga_set calls. The two calls that allow users to create restricted arrays
are ga_set_restricted and ga_set_restricted_range. The �rst call is more
general, the second is a convenience call that allows users to create restricted
arrays on a contiguous set of processors.

Both calls allow users to restrict the data in a global array to a subset of
available processors. The set ga_set_restricted call has two arguments, nproc,
and an array list of size nproc. Nproc represents the number of processors
that are supposed to contain data and list is an array of the processor IDs that
contain data. For the array shown in Figure 12.1, the problem is run on 36
processors but for nproc=4 and list=[8,9,15,21] only the processors shown in
the �gure will have data. The array will be decomposed assuming that it is
distributed amongst only 4 processors so it will be broken up using either a
2x2, 1x4, or 4x1 decomposition. The block that would normally be mapped
to process 0 in a 4 processor decomposition will go to process 8, the data that
would map to process 1 will go to process 9, etc. This functionality can be used
to create global arrays that have data limited to a small set of processors but
which are visible to all processors.

The restricted array capability can also be used to alter the default distri-
bution of data. This is ordinarily done in a column major way on the processor
grid so that a global array created on 16 processors that has been decomposed
into a 4x4 grid of data blocks would have data mapped out as shown in Fig-
ure 12.2. The �rst column of blocks is assigned to processes 0-3, the second to
processes 4-7, etc.

Figure 12.3 shows an alternative distribution that could be achieved using re-
stricted arrays and setting the list array to [0,1,4,5,2,3,6,7,8,9,12,13,10,11,14,15].
This distribution might but useful for reducing intranode communication for
multiprocessor nodes

12.2 Restricted Arrays Operations

Fortran subroutine ga_set_restricted(g_a, list, nproc)

C void GA_Set_restricted(int g_a, int list[], int nproc)

C++ GA::GlobalArray::setRestricted(int list[], int nproc) const

This subroutine restricts data in the global array g_a to only the nproc pro-
cessors listed in the array list. The value of nproc must be less than or equal
to the number of available processors. If this call is used in conjunction with

CHAPTER 12. RESTRICTED ARRAYS 107

Figure 12.1: A global array distributed on 36 processors. If nproc=4 and list =
[8,9,15,21] then only the shaded processor will contain data. The array will be
decomposed into 4 blocks.

Figure 12.2: Standard data distribution for a global array created on 16 proces-
sors and decomposed into a 4x4 grid of data blocks.

CHAPTER 12. RESTRICTED ARRAYS 108

Figure 12.3: An alternative distribution that could be achieved using restricted
arrays. An array on 16 processors decomposed into a 4x4 grid of data blocks.

ga_set_irreg_distr, then the decomposition in the ga_set_irreg_distr call
must be done assuming the number of processors used in the ga_set_restricted
call. The data that would ordinarily get mapped to process 0 in an nproc dis-
tribution will get mapped to the processor in list[0], the data that would be
mapped to process 1 will get mapped to list[1], etc. This can be used to
restructure the data layout in a global array even if the value of nproc equals
the total number of processors available.

Fortran subroutine ga_set_restricted_range(g_a, list, nproc)

C void GA_Set_restricted_range(int g_a, int lo_proc,

int hi_proc)

C++ GA::GlobalArray::setRestrictedRange(int lo_proc,

int hi_proc) const

This subroutine restricts data in the global array g_a to the processors begin-
ning with lo_proc and ending with hi_proc. Both lo_proc and hi_proc must
be less than or equal to the total number of processors available minus one (e.g.,
in the range [0,N-1] where N is the total number of processors) and lo_proc

must be less than or equal to hi_proc. If lo_proc=0 and hi_proc=N-1 then this
command has no e�ect on the data distribution. This call is equivalent to us-
ing the ga_set_restricted call where nprocs = hi_proc-lo_proc+1 and the
array list contains the processors [lo_proc, hi_proc] in consecutive order.

Chapter 13

Appendix A - List of C

Functions

Online listing of C functions.

109

http://www.emsl.pnl.gov/docs/global/Capi.html

Chapter 14

Appendix B - List of Fortran

Functions

Online listing of Fortran functions.

110

http://www.emsl.pnl.gov/docs/global/GAapi.html

Chapter 15

Appendix C - Global Arrays

on Older Systems

111

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS112

Global Arrays supports many computing platforms. This appendix discusses
those platforms, including older systems.

The web page www.emsl.pnl.gov/docs/global/support.html contains up-
dated information about using GA on di�erent platforms. Please refer to this
page frequently for most recent updates and platform information.

15.1 Platform and Library Dependencies

The following platforms are supported by Global Arrays.

15.2 Supported Platforms

• IBM SP, CRAY T3E/J90/SV1, SGI Origin, Fujitsu VX/VPP, Hitachi

• Cluster of workstations: Solaris, IRIX, AIX, HPUX, Digital/Tru64 Unix,
Linux, NT

• Standalone uni- or multi-processor workstations or servers

• Standalone uni- or multi-processor Windows NT workstations or servers

Older versions of GA supported some additional (now obsolete) platforms such
as: IPSC, KSR, PARAGON, DELTA, CONVEX. They are not supported in
the newer (>3.1) versions because we do not have access to these systems. We
recommend using GA 2.4 on these platforms.

For most of the platforms, there are two versions available: 32-bit and 64-bit.
This table speci�es valid TARGET names for various supported platforms.

Platform 32-bit TARGET name 64-bit TARGET
name

Remarks

Sun Ultra SOLARIS SOLARIS64 64-bit version
added in GA 3.1

IBM BlueGene/P BGP supported in GA
4.1 and later
(Contact your
BlueGene sys
admin for GA

instalation). More
info in support

page...
IBM BlueGene/L BGL added in GA 4.0.2

(Contact your
BlueGene sys
admin for GA

instalation). More
info in support

page...

www.emsl.pnl.gov/docs/global/support.html

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS113

Platform 32-bit TARGET name 64-bit TARGET
name

Remarks

Cray XT3/XT4 LINUX64 (or)
CATAMOUNT

TARGET based on
the OS in compute

Nodes (Cata-
mount/Linux).
More info and

sample settings in
support page...

IBM RS/6000 IBM IBM64 64-bit version
added in GA 3.1

IBM SP LAPI LAPI64 no support yet for
user-space

communication in
the 64-bit mode by

IBM
Compaq/DEC

alpha
not available DECOSF

HP pa-risc HPUX HPUX64 64-bit version
added in GA 3.1

Linux (32-bit):
x86, ultra, powerpc

LINUX not available

Linux (64-bit):
ia64 (Itanium),

x86_64 (Opteron),
ppc64, etc

not available LINUX64

Linux alpha not available LINUX64 64-bit version
added in GA 3.1;
Compaq compilers
rather than GNU

required
Cray T3E not available CRAY-T3E
Cray J90 not available CRAY-YMP
Cray SV1 not available CRAY-SV1
Cray X1 not available CRAY-SV2 In X1, by default,

TARGET is
de�ned by the

operating system
as cray-sv2

SGI IRIX mips SGI_N32, SGI SGIFP
Hitachi SR8000 HITACHI not available
Fujitsu VPP
systems

FUJITSU-VPP FUJITSU-VPP64 64-bit version
added in GA 3.

NEC SX series NEC

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS114

Platform 32-bit TARGET name 64-bit TARGET
name

Remarks

Apple MACX MACX64 Running MAC X
or higher

To aid development of fully portable applications, in 64-bit mode Fortran
integer datatype is 64-bits. It is motivated by 1) the need of applications to use
very large data structures and 2) Fortran INTEGER*8 not being fully portable.
The 64-bit representation of integer datatype is accomplished by using the ap-
propriate Fortran compiler �ag.

Because of limited interest in heterogenous computing among known GA
users, the Global Arrays library still does not support heterogeonous platforms.
This capability can be added if required by new applications.

15.3 Selection of the communication network for
ARMCI

Some cluster installations can be equipped with a high performance network
which o�er instead, or in addition to TCP/IP some special communication pro-
tocol, for example GM on Myrinet network. To achieve high performance in
Global Arrays, ARMCI must be built to use these protocols in its implementa-
tion of one-sided communication. Starting with GA 3.1, this is accomplished by
setting an environment variable ARMCI_NETWORK to specify the protocol
to be used. In addition, the it might be necessary to provide location for the
header �les and library path corresponding to location of s/w supporting the
appropriate protocol API, see g/armci/con�g/makecoms.h for details.

http://www.emsl.pnl.gov/docs/parsoft/armci

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS115

Network Protocol Name ARMCI_NETWORK
Setting

Supported
Platforms

Ethernet TCP/IP SOCKETS
(optional/default)

workstation
clusters (32 and

64-bit)
Quadrics/QsNet Elan3/Shmem QUADRICS or

ELAN3
Linux

(alpha,x86,IA64,..),
Compaq

Quadrics/QsNet II Elan4 ELAN4 Linux (32 and
64-bit)

In�niband OpenIB OPENIB Linux (32 and
64-bit). NOTE:
This network is
supported in GA
versions>=4.1. For
more info see the
Support page...

In�niband VAPI MELLANOX Linux (32 and
64-bit)

Myrinet GM GM Linux
(x86,ultra,IA64)

Giganet cLAN VIA VIA Linux (32 and
64-bit)

MPI MPI-SPAWN Supported in GA
4.1 or higher. This
network setting

can be used on any
platform that has
MPI-2 dynamic

process
management

support. Using this
setting is

recommended only
if your network is
not listed above.

Other Platforms: (More settings info for these platforms in theSupport page)
Platforms Protocol Name ARMCI_NETWORK Setting

IBM BG/L BGML BGMLMPI
Cray XT3/XT4 Shmem Portals CRAY-SHMEM PORTALS 2.1.3

15.4 Selection of the message-passing library

As explained in Section 3, GA works with either MPI or TCGMSG message-
passing libraries. That means that GA applications can use either of these

http://www.emsl.pnl.gov/docs/global/support.html
http://www.emsl.pnl.gov/docs/global/support.html

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS116

interfaces. Selection of the message-passing library takes place when GA is
built. Since the TCGMSG library is small and compiles fast, it is included with
the GA distribution package and built on Unix workstations by default so that
the package can be built as fast and as convenientlly to the user as possible.
There are three possible con�gurations for running GA with the message-passing
libraries:

1. GA with MPI (recommended): directly with MPI. In this mode, GA pro-
gram should contain MPI initialization calls.

2. GA with TCGMSG-MPI (MPI and TCGMSG emulation library): TCGMSG-
MPI implements functionality of TCGMSG using MPI. In this mode, the
message passing library is initialized using a TCGMSG PBEGIN(F) call
which internally references MPI_Initialize. To enable this mode, de�ne
the environmental variable USE_MPI.

3. GA with TCGMSG: directly with TCGMSG. In this mode, GA program
should contain TCGMSG initialization calls.

For the MPI versions, the optional environmental variables MPI_LIB and MPI_INCLUDE
are used to point to the location of the MPI library and include directories if
they are not in the standard system location(s). GA programs are started with
the mechanism that any other MPI programs use on the given platform.

The recent versions of MPICH (an MPI implementation from ANL/Mississippi
State) keep the MPI header �les in more than one directory and provide com-
piler wrappers that implicitly point to the appropriate header �les. One can
:

• use MPI_INCLUDE by expanding the string with another directory com-
ponent pre�xed with "-I" (you are passing include directory names as a
part of compiler �ags), or (starting with GA 3.1) separated by comma ","
and withot the pre�x, OR

• use MPI aware compiler wrappers e.g., mpicc and mpif77 to build GA
right out of the box on UNIX workstations:

make FC=mpif77 CC=mpicc

One disadvantage of the second approach it that GA make�le in some circum-
stances might be not able to determine which compiler (e.g., GNU or PGI) is
called underneath by the MPICH compiler wrappers. Since di�erent compil-
ers provide di�erent Fortran/C interface, the package might fail to build. This
problem is most likely to occur on non-Linux Unix systems with non-native
compilers (e.g., gcc).

On Windows NT, the current version of GA was tested with WMPI, an NT
implementation derived from MPICH in Portugal.

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS117

15.5 Dependencies on other software

In addition to the message-passing library, GA requires:

• MAMA (Memory Allocator), a library for managment of local memory;

• ARMCI, a one-sided communication library that GA uses as its run-time
system;

• BLAS library is required for the eigensolver and ga_dgemm;

• LAPACK library is required for the eigensolver (a subset is included with
GA, which is built into liblinalg.a);

GA may also depend on other software depending on the functions being used.

• GA eigensolver, ga_diag, is a wrapper for the eigensolver from the PEIGS
library; (Please contact George Fannabout PEIGS)

• SCALAPACK, PBBLAS, and BLACS libraries are required for ga_lu_solve,
ga_cholesky, ga_llt_solve, ga_spd_invert, ga_solve. If these libraries are
not installed, the named operations will not be available.

• If one would like to generate trace information for GA calls, an additional
library libtrace.a is required, and the -DGA_TRACE de�ne �ag should
be speci�ed for C and Fortran compilers.

15.6 Writing GA Programs

C programs that use Global Arrays should include �les `global.h', 'ga.h', `macde-
cls.h'. Fortran programs should include the �les `mafdecls.fh', `global.fh'. For-
tran source must be preprocessed as a part of compilation.

The GA program should look like:

• When GA runs with MPI

Fortran C

call mpi_init(..) MPI_Init(..) ! start MPI

call ga_initialize() GA_Initialize() ! start global arrays

status = ma_init(..) MA_Init(..) ! start memory allocator

.... do work do work

call ga_terminate() GA_Terminate() ! tidy up global arrays call

mpi_finalize() MPI_Finalize() ! tidy up MPI

stop ! exit program

• When GA runs with TCGMSG or TCGMSG-MPI

http://www.emsl.pnl.gov/docs/parsoft/ma/MAapi.html
http://www.emsl.pnl.gov/docs/parsoft/armci
mailto:fanngi@ornl.gov

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS118

Fortran C

call pbeginf() PBEGIN_(..) ! start TCGMSG

call ga_initialize() GA_Initialize() ! start global arrays

status = ma_init(..) MA_Init(..) ! start memory allocator

.... do work do work

call ga_terminate() GA_Terminate() ! tidy up global arrays

call pend() PEND_() ! tidy up tcgmsg

stop ! exit program

The ma_init call looks like :

status = ma_init(type, stack_size, heap_size)

and it basically just goes to the OS and gets stack_size+heap_size elements of
size type. The amount of memory MA allocates need to be su�cient for storing
global arrays on some platforms. Please refer to section 3.2 for the details and
information on more advanced usage of MA in GA programs.

15.7 Building GA

Use GNU make to build the GA library and application programs on Unix and
Microsoft nmake on Windows. The structure of the available make�les are

• GNUmake�le: Unix make�le

• MakeFile: Windows NT make�le

• con�g/make�le.h: de�nitions & include symbols

The user must specify TARGET as an environment variable (setenv TARGET
TARGET_name) or in the GNUmake�le or on the command line when calling
make. For example:

(for IBM/SP platform)

setenv TARGET LAPI

(or) from the command line,

gmake TARGET=LAPI

Valid TARGET_name for various supported platforms can be found in the
above table. Valid TARGETs can also be listed by calling make in the top
level distribution directory on UNIX family of systems when TARGET is not
de�ned. On Windows, WIN32, CYGNUS and INTERIX (previously known as
OpenNT) are supported.

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS119

Compiler Settings (optional): For various supported platforms, the de-
fault compilers and compiler options are speci�ed in con�g/make�le.h. One
could change the prede�ned default compilers and compiler �ags in GA package
either by specifying them on the command line or in the �le con�g/make�le.h.
Note: editing con�g/make�le.h for any platform requires extra care and is in-
tended for intermediate/advanced users.

• CC - name of the C compiler (e.g., gcc, cc, or ccc)

• FC - name of the Fortran compiler (e.g., g77, f90, mpif77 or fort)

• COPT - optimization or debug �ags for the C compiler (e.g., -g, -O3)

• FOPT - optimization or debug �ags for the Fortran compiler (e.g., -g,
-O1)

For example,

gmake FC=f90 CC=cc FOPT=-O4 COPT=-g

Note that GA provides only Fortran-77 interfaces. To use and compile with a
Fortran 90 compiler, it has to support a subset of Fortran-77.

15.7.1 Unix Environment

As mentioned in an earlier section, there are three possible con�gurations for
building GA.

1. GA with MPI (recommended): To build GA directly with MPI, the user
needs to de�ne environmental variables MPI_LIB and MPI_INCLUDE
which should point to the location of the MPI library and include directo-
ries. Additionally, the make/environmental variable MSG_COMMS must
be de�ned as MSG_COMMS =MPI. (In csh/tcsh, setenv MSG_COMMS
MPI)

2. GA with TCGMSG-MPI: To build GA with the TCGMSG-MPI, user
needs to de�ne environmental variables USE_MPI, MPI_LIB and MPI_INCLUDE
which should point to the location of the MPI library and include direc-
tories.

Example: using csh/tcsh (assume using MPICH installed in /usr/local on
IBM workstation)

setenv USE_MPI y

setenv MPI_LOC /usr/local/mpich

setenv MPI_LIB $MPI_LOC/lib/rs6000/ch_shmem

setenv MPI_INCLUDE $MPI_LOC/include

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS120

3. GA with TCGMSG: To build GA directly with TCGMSG, the user must
de�ne the environmental variable MSG_COMMS=TCGMSG. Note: When
MSG_COMMS=TCGMSG, make sure to unset the environment variable
USE_MPI (e.g. unsetenv USE_MPI).

After chosing the con�guration, to build the GA library, type

make

or

gmake

If the build is successful, a test program test.x will be created in global/testing
directory. Refer to the Section "Running GA programs" on how to run this
test.

To build an application based on GA located in g/global/testing, for exam-
ple, the application's name is app.c (or app.F, app.f), type

make app.x

or

gmake app.x

Please refer to compiler �ags in �le g/con�g/make�le.h to make sure that For-
tran and C compiler �ags are consistent with �ags uses to compile your appli-
cation. This may be critical when Fortran compiler �ags are used to change the
default length of the integer datatype.

Interface to ScaLAPACK GA interface routines to ScaLAPACK are only
available, when GA is build with MPI and ScaLAPACK. Before building GA,
the user is required to de�ne the environment variables USE_SCALAPACK or
USE_SCALAPACK_I8 (for scalapack libraries compiled with 8-byte integers),
and the location of ScaLAPACK & Co. libraries in the env variable SCALA-
PACK.

Example: using csh/tcsh

setenv USE_SCALAPACK y (or) setenv USE_SCALAPACK_I8 y

setenv SCALAPACK '-L/msrc/proj/scalapack/LIB/rs6000

-lscalapack -lpblas -ltools -lblacsF77cinit -lblacs'

setenv USE_MPI y

Since there are certain interdependencies between blacs and blacsF77cinit, some
system might require speci�cation of -lblacs twice to �x the unresolved external
symbols from these libs.

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS121

Installing GA C++ Bindings By default, GA C++ bindings are not built.
GA++ is built only if GA_C_CORE is de�ned as follows:

setenv GA_C_CORE y

cd GA_HOME

make clean; make

(This will build GA with C core and C++ binding).

Using GA_C_CORE GA's internal core is implemented using Fortran and
C. When GA_C_CORE is set, core Fortran functionalites are replaced by their
C counterparts to eliminate the hassle involved in mixing Fortran and C with
C++ bindings on certain platforms or for some compilers (like, missing Fortran
symols/libraries during the linking phase). NOTE: C and C++ compilers should
be from the same family. GA_C_CORE doesnot support mixing C and C++
compilers (e.g.using Intel compiler for C and GNU compiler for C++).

make FC=ifort CC=icc CXX=g++ (not supported if GA_C_CORE is set)

make FC=ifort CC=icc CXX=icpc (Intel compiler family - supported)

15.7.2 Windows NT

To buid GA on Windows NT, MS Power Fortran 4 or DEC Visual Fortran 5 or
later, and MS Visual C 4 or later are needed. Other compilers might need the
default compilation �ags modi�ed. When commercial Windows compilers are
not available, one can choose to use CYGNUS or INTERIX and build it as any
other Unix box using GNU compilers.

First of all, one needs to set environment variables (same as in Unix enviro-
ment). GA needs to know where �nd the MPI include �les and libraries. To do
this, select the Environment tab under the Control Panel, then set the variables
to point to the location of MPI, for example for WMPI on disk D:

set MPI_INCLUDE as d:\Wmpi\Include

set MPI_LIB as d:\Wmpi\Console

Make sure that the dynamic link libraries required by the particular implemen-
tation of MPI are copied to the appropriate location for the system DLLs. For
WMPI, copy VWMPI.dll to \winnt.

In the top directory do,

nmake

The GA test.exe program can be built in the g\global\testing directory:

nmake test.exe

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS122

In addition, the HPVM package from UCSD o�ers the GA interface in the
NT/Myrinet cluster environment.

GA could be built on Windows 95/98. However, due to the DOS shell
limitations, the top level NTmake�le will not work. Therefore, each library has
to be made separately in its own directory. The environment variables referring
to MPI can be hardcoded in the NT make�les.

15.7.3 Writing and building new GA programs

For small programs contained in a single �le, the most convenient approach is
to put your program �le into the g/global/testing directory. The existing GNU
make su�x rules would build an executable with the ".x" su�x from any C or
Fortran source �le. You do not have to modify make�les in g/global/testing
at all. For example, if your program is contained in my�le.c or my�le.F and
you place it in that directory, all you need to do to create an executable called
my�le.x is to type:

make myfile.x

Windows nmake is not as powerful as GNU make - you would need to modify
the NT make�le.

This approach obviously is not feasible for large packages that contain mul-
tiple source �les and directories. In that case you need to provide apropriate
de�nitions in your make�le:

• to header �les located in the include directory, g/include, where all public
header �les are copied in the process of building GA

• add references to libglobal.a (Unix) global.lib (Windows) and libma.a
(Unix) ma.lib (Windows) in g/lib/$(TARGET) and for the message-passing
libraries

• follow compilation �ags for the GA test programs in GNU and Windows
make�les g/con�g/make�le.h. The recommended approach is to include
g/con�g/make�le.h in your make�le.

Starting with GA 3.1, one could simplify linking of applications by including
g/armci/con�g/makecoms.h and g/armci/con�g/makemp.h that de�ne all the
necessary platform speci�c libraries that are required by GA. 2.4

15.8 Running GA Programs

Assume the GA program app.x had already been built. To run it,
Running on shared memory systems and clusters: (i.e., network of

workstations/linux clusters)
If the app.x is built based on MPI, run the program the same way as any

other MPI programs.
Example: to run on four processes on clusters, use

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS123

mpirun -np 4 app.x

Example: If you are using MPICH (or MPICH-like Implementations), and
mpirun requires a machine�le or host�le, then run the GA program same as
any other MPI programs. The only change required is to make sure the host-
names are speci�ed in a consecutive manner in the machine�le. Not doing this
will prevent SMP optimizations and would lead to poor resource utilization.

mpirun -np 4 -machinefile machines.txt app.x

Contents of machines.txt : (Let us say we have two 2-way SMP nodes (host1 and
host2, and correct formats for a 4-processor machine�le is shown in the table
below).

Correct Correct Incorrect

host1
host1
host2
host2

host2
host2
host1
host1

host1
host2
host1 (This is
wrong, the same
hosts should be
speci�ed together)
host2

If app.x is built based on TCGMSG (not including, Fujitsu, Cray J90, and
Windows, because there are no native ports of TCGMSG), to execute the pro-
gram on Unix workstations/servers, one should use the 'parallel' program (built
in tcgmsg/ipcv4.0). After building the application, a �le called 'app.x.p' would
also be generated (If there is not such a �le, make it:

make app.x.p

This �le can be edited to specify how many processors and tasks to use, and
how to load the executables. Make sure that 'parallel' is accessible (you might
copy it into your 'bin' directory). To execute, type:

parallel app.x

1. On MPPs, such as Cray XT3/XT4, or IMB SPs, use the appropriate
system command to specify the number of processors, load and run the
programs. Example:

• to run on IBM SP, run as any other parallel programs (i.e., using
poe)

• to run on Cray XT3/XT4, use yod.

2. On Microsoft NT, there is no support for TCGMSG, which means you can
only build your application based on MPI. Run the application program
the same way as any other MPI programs. For, WMPI you need to create
the .pg �le. Example:

R:\nt\g\global\testing> start /b test.exe

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS124

15.9 Building Intel Trace Analyzer (VAMPIR)
Instrumented Global Arrays

15.9.1 Introduction

The following topics are covered in this section.

• New functions needed for the instrumentation

• Build instructions

• Further information

• Known problems

15.9.2 New Functions Needed for the Instrumentation

• To instrument the GA three C-functions are de�ned (see g/ga_vt.c):

• vampir_symdef is de�ned to associate integer identi�ers with user de�ned
states and activities. It handles any errors that might occur.

• vampir_begin is de�ned to register entering a user de�ned state. It uses
a global counter called <vampirtrace_level> to avoid tracing the use of
libraries within libraries.

• vampir_end is de�ned to register leaving a user de�ned state.

The interfaces of these functions are de�ned below.

void vampir_symdef (int id, char *state, char *activity,

char *file, int line);

void vampir_begin (int id, char *file, int line);

void vampir_end (int id, char *file, int line);

In addition to these functions two functions are de�ned to initialise and �nalise
MPI when needed. The use of MPI is required because Vampirtrace uses it
internally. The functions are

void vampir_init (int argc, char **argv, char *file,

int line);

void vampir_finalize (char *file, int line);

If the cpp �ag -DMPI is provided then these two functions will turn into null
functions. In that case the use of MPI within the GAs will ensure that Vampir-
trace will be initialised properly.

The values for <�le> and <line> are substitute with __FILE__ and
__LINE__ macros. On compilation the C-preprocessor replaces these macros

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS125

with the actual �le name and line number. These values are used to generate
error messages if needed. These functions are de�ned in the �le g/ga_vt.h.

For each of the instrumented libraries an initialisation routine must be de-
�ned that sets the state and activity tables up.

• tcgmsg : tcgmsg_vampir_init in g/tcgmsg/tcgmsg_vampir.c. This rou-
tine is called from within PBEGINF.

• tcgmsg-mpi : tcgmsg_vampir_init in g/tcgmsg-mpi/tcgmsg_vampir.c called
from ALT_PBEGIN_ in misc.c.

• armci : armci_vampir_init in g/armci/src/armci_vampir.c called from
ARMCI_Init in armci.c.

• global : ga_vampir_init in g/global/src/ga_vampir.c called from ga_initialize_
and ga_initialize_ltd_ in global.armci.c

15.9.3 Build Instructions

To build GA with Vampir (now called, Intel Trace Analyzer) set the environment
variable GA_USE_VAMPIR.

e.g., setenv GA_USE_VAMPIR y

to compile the GAs including all the Vampirtrace instrumentation. Further
environment variables that are required are

LIBVT : The name of the library, normally -lVT which

is the default.

VT_LIB : The path to the library, -L<library-path>

e.g. setenv VT_LIB /usr/local/vampir/lib

VT_INCLUDE: The path to the include file VT.h,

-I<include-path>. e.g. setenv VT_INCLUDE

/usr/local/vampir/include

On some platforms it may be necessary to set LIBMPI to -lpmpi to load the
MPI pro�le interfaces that vampirtrace needs.

There are no defaults for VT_PATH and VT_INCLUDE. Beyond this point
simply follow the GA make instructions.

Note: that libVT.a should be loaded before mpi or pmpi otherwise the
vampirtracing will be ignored.

15.9.4 Further Information

More information on using Intel Trace Analyzer can be found on the Intel web-
site at

http://www.intel.com/software/products/cluster/tanalyzer/
From this location Vampir and Vampirtrace can be downloaded for various

platforms including validation licenses if needed.

http://www.intel.com/software/products/cluster/tanalyzer/

CHAPTER 15. APPENDIX C - GLOBAL ARRAYS ONOLDER SYSTEMS126

15.9.5 Known Problems

• Vampirtrace and LAM-MPI clash

In an attempt to produce traces while running with LAM-MPI the program
would always abort in MPI_Init due to a segmentation violation. The Pallas
website does not mention LAM-MPI at all, but does explicitly state that Vam-
pirtrace does work with MPICH. Indeed the latter has been con�rmed in tests.
Therefore it is not recommended to use the Vampirtrace instrumentation with
LAM-MPI.

	Introduction
	Overview
	Basic Functionality
	Programming Model
	Application Guidelines
	When to use GA:
	When not to use GA

	Writing, Building and Running GA Programs
	Platform and Library Dependencies
	Supported Platforms
	Selection of the communication network for ARMCI
	Selection of the message-passing library
	Dependencies on other software

	Writing GA Programs
	Building GA
	Building and Running GA Test and Example Programs
	Configure Options which Take Arguments
	BLAS and LAPACK
	ScaLAPACK
	GA C++ Bindings
	Disabling Fortran
	Python Bindings
	Writing and Building New GA Programs

	Running GA Programs
	Building Intel Trace Analyzer (VAMPIR) Instrumented Global Arrays
	Introduction
	New Functions Needed for the Instrumentation
	Build Instructions
	Further Information
	Known Problems

	Initialization and Termination
	Message Passing
	Memory Allocation
	Determining the Values of MA Stack and Heap Size

	GA Initialization
	Limiting Memory Usage by Global Arrays

	Termination
	Creating Arrays - I
	Creating Arrays with Ghost Cells

	Creating Arrays - II
	Destroying Arrays

	One-sided Communication Operations
	Put/Get
	Accumulate and Read-and-increment
	Scatter/Gather
	Periodic Interfaces
	Non-blocking operations

	Interprocess Synchronization
	Lock and Mutex
	Fence
	Sync

	Collective Array Operations
	Basic Array Operations
	Whole Arrays
	Patches

	Linear Algebra
	Whole Arrays
	Patches
	Element-wise operations

	Interfaces to Third Party Software Packages
	Scalapack
	PeIGS
	Interoperability with Others

	Synchronization Control in Collective Operations

	Utility Operations
	Locality Information
	Process Information
	Cluster Information

	Memory Availability
	Message-Passing Wrappers to Reduce/Broadcast Operations
	Others
	Inquire
	Print
	Miscellaneous

	GA++: C++ Bindings for Global Arrays
	Overview
	GA++ Classes
	Initialization and Termination:
	GAServices
	Global Array

	Mirrored Arrays
	Overview
	Mirrored Array Operations

	Processor Groups
	Overview
	Creating New Groups
	Setting the Default Group
	Inquiry functions
	Collective operations on groups

	Sparse Data Operations
	Sparse Matrix-Vector Multiply Example:

	Restricted Arrays
	Overview
	Restricted Arrays Operations

	Appendix A - List of C Functions
	Appendix B - List of Fortran Functions
	Appendix C - Global Arrays on Older Systems
	Platform and Library Dependencies
	Supported Platforms
	Selection of the communication network for ARMCI
	Selection of the message-passing library
	Dependencies on other software
	Writing GA Programs
	Building GA
	Unix Environment
	Windows NT
	Writing and building new GA programs

	Running GA Programs
	Building Intel Trace Analyzer (VAMPIR) Instrumented Global Arrays
	Introduction
	New Functions Needed for the Instrumentation
	Build Instructions
	Further Information
	Known Problems

