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Abstract 
 
As the high performance computational requirements of 
the scientific community grow more complex in an 
increasingly distributed environment, there is a rising 
need to manage the allocation of these resources across 
larger boundaries. Local site management needs a means 
to fairly distribute the underlying computing resources 
(processors, memory, disk) to the various users or 
projects that have access to them. Some sites have 
attempted to resolve this deficiency by writing rather 
simplistic homegrown scripts that do little more than 
track project/account CPU usage in a periodic post-
processing fashion. However, these mechanisms are 
becoming increasingly inadequate. Without scalable and 
flexible resource allocation and control mechanisms, 
wide-scale distributed computing will not be realized. In 
this paper, QBank is introduced as an effective tool in 
managing resource allocations within high performance 
computational environments. QBank’s design and 
architectural features are considered. Strategies for 
deployment are explored. Scenarios for how QBank might 
operate within a meta-computing context are described. 
Issues of scalability, security, and future work are 
discussed. 
 
 
1. Introduction 
 

As the high performance scientific computing 
resources grow in scale and capability, there is an 
increased need to manage the allocation of these 
resources for a large number of users. The site 
management needs a means to fairly distribute the 
underlying computing resources (processors, memory, 
disk) to the various users or projects that have access to 
them. This introduces a need for a resource allocation 
management tool, often referred to as an allocation 
manager or an allocation bank. The allocation manager 
associates a cost (measured in node-hours or 

computational credits) to a computing resource. It 
provides full accounting of each resource used and the 
costs charged to each job utilizing the resource. It ensures 
that users and projects use only the resources allocated to 
them. In simple terms, it ensures that people get what they 
“pay” for.  

Without allocation management, projects and users 
would consume computing resources based solely on how 
aggressively they submitted their workload rather than 
based on any site managed policies and priorities. 
Allocation management becomes increasingly necessary 
as inter-site sharing of resources becomes prevalent. Even 
within a single site with multiple computing systems, 
different resources may have different valuations or 
require different allotments to users. Besides simply 
allocating the total amount of the computing resource a 
user or project can use, the site management needs a way 
to set timeframes for the expenditure of these allocations. 
This capability is also necessary in order to prevent year-
end resource exhaustion when underspent projects 
simultaneously claim allocation fulfillment. It provides 
the capability of meting out the resources at a fair and 
predictable rate. By measuring actual project resource 
usage against allocated amounts it allows for insightful 
planning of how much more work can be supported by 
new projects as old ones expire in regular cycles. 
 
2. Overview 
 

In order to fill the need for allocation management, 
PNNL has developed a versatile allocation bank called 
QBank [1], which currently runs on its production IBM 
SP High Performance Computers as well as the 192-CPU 
Linux cluster at PNNL. QBank is also in production use 
at the Maui High Performance Computing Center and the 
University of Utah and is being installed at a number of 
other sites and universities. QBank has proven effective 
in providing the ability to manage computational 
resources allocated to a project or user at High 
Performance Computing facilities.  



Much like a bank but with the currency measured in 
computational credits instead of dollars, QBank provides 
an administrative interface supporting familiar operations 
such as deposits, withdrawals, transfers and refunds. It 
provides balance and usage feedback to users, managers, 
and system administrators. Computational resources are 
allocated to projects and users and full accounting is 
made of resource utilization. Some of QBank’s existing 
capabilities include: reservations, real-time debiting, 
expiring allocations, earliest credit expenditure, flexible 
charging, multiple accounts per user and multiple users 
per account, common credit pool, debit and credit 
allocations, overdraft protection, allocation exchange 
mechanisms, resource quotes, anonymous users, default 
accounts, security authorization, programming interfaces 
and database persistence. 
 
3. Design/architecture 
 

QBank Version2 is written almost exclusively in perl5. 
This allows great flexibility for data manipulation and 
architectural independence. It is easy to read and modify 
the source code and requires no compiling. It is also 
widely available and freely distributed. QBank consists of 
a server daemon (qbankd), and clients (to be discussed 
later) and provides persistence and transactions with a 
relational database.  

 
3.1. Fundamentals 
 

Just like in a bank, the fundamental container of 
computational credits is the account. You may have 
multiple users per account and multiple accounts per user 
(See Figure 1). 
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Figure 1. Multiple users per account and multiple 
accounts per user. 

Deposits are made into the accounts creating 
allocations. Withdrawals are made against the appropriate 
accounts according to the value of the resources utilized. 
The currency for the bank may be based on processor-
seconds from a reference system, or it may be based on 
real money. 

Unlike a conventional bank, however, the computa-
tional credits within the account can be apportioned to 
various users, machines, and timeframes for expenditure. 
Besides being able to specify which users can draw from 
which account, with QBank you have full control over 
how much each user is allowed to use within each 
account, how much they can use toward which machines, 
as well as the timeframes over which their allocations 
must be used.  
 
3.2. Charging 
 

QBank supports a flexible and customizable 
mechanism for charging for resource utilization. By 
default, the withdrawal amount is calculated by 
multiplying the number of processors used by the number 
of wallclock seconds taken by the job. Besides CPU, a 
resource supplier may charge based on the amount of 
memory, disk, network bandwidth used, or virtually any 
other consumable resource. When resources are shared, 
such as multiple jobs sharing CPUs on an SMP system, 
consumption rate charging can be used to prorate the 
charges according to the percentage of actual 
consumption of the resource. A job can be charged 
different static multipliers depending on quality of service 
requested, class, node type, or which machine it ran on. 
Since the charge algorithm is externalized, dynamic 
charging can be applied such as charging different rates 
according to time of day or week, dynamic price 
adjustment according to load or queue backlog, a query to 
an external information service, or a cached second-price 
auction result. 
 
3.3. Interaction with other applications 
 

QBank was designed to interface with other allocation 
managers, schedulers, resource managers, meta-
schedulers, information services and other external 
services. Other applications can interact with QBank by 
linking and using a C-language API (QBank 2.9) or by 
calling command line clients. Figure 2a shows an 
example of a typical interaction sequence. 
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Figure 2a. Local site allocations and job 
scheduling flow. 
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0. Make Deposits, etc. 
1. Submit Job 
2. Obtain Quote 
3. Stage Job 
4. Balance Check 
5. Make Reservation 
6. Start Job 
7. Job Completes 
8. Remove Reservation & Make Withdrawal 
 

Figure 2b. Remote site allocations and job 
scheduling flow. 

 

After initializing the accounts by adding users and 
creating allocations, a user may want to access a 
computational resource. A job is submitted to a local 
resource manager. As part of the job description, an 
account may be specified, as well as the number and type 
of resources desired and usually an upper limit of how 
long the user will use the resource. If the user does not 
specify an account, QBank or the scheduler may be 
configured to use default or fallback accounts. A submit 
filter may be invoked by the resource manager to perform 
a sanity balance check for the user and warn the user or 
reject the job if insufficient funds are available. This is 
used more for an early warning system so the job does not 
wait in the queue for a long period of time before it must 
be cancelled due to lack of funds. When the scheduler 
determines that the job can run, it makes a reservation 
(which is a pending withdrawal or hold on the user’s 
funds) against the account before starting the job. This 
ensures that the user has sufficient funds to complete the 
job and prevents oversubscription, since reservations can 
only be made with available (non-reserved) funds. When 
the job completes, the reservation is removed and the 
actual withdrawal is made. Normally the withdrawal will 
be less than the amount reserved, since the reservation 
amount is based on the wallclock limit and the 
withdrawal amount is based on actual wallclock time 
used. Reservations which are not removed, automatically 
expire after their wallclock limits have been surpassed. 
Reports can be sent out periodically to update users and 
managers of resource utilization levels and account status. 

Figure 2b depicts a possible interaction sequence for a 
meta-computing environment where a job could run on 
any of a number of computational resources.  

A job is submitted to a meta-scheduler with details of 
its resource requirements and preferences. The meta-
scheduler determines which systems have resources that 
could fulfill the user’s request. Quotations are obtained 
from the favored systems to determine what it will cost to 
run there and to secure a rate guarantee. The system is 
selected that most closely translates to the user’s 
preferences concerning price vs. performance charac-
teristics. The appropriate account for the chosen system 
can be specified in the job description, or it could be 
derived from a global information service (not shown) 
providing system-to-account mappings. After the job is 
staged to the scheduler governing the use of the selected 
resource, the quotation id is passed along when making 
the reservation and withdrawal in order to secure the 
guaranteed rate. In addition to the computation, data-
staging may have to be scheduled and charged for before 
and after the job runs.  



QBank could be utilized as an important component of 
GRID environments with interactions with exchange 
servers, other allocation managers, market price 
directories, information services, etc. [2,3,4] 
 
3.4. Database based design 
 

QBank takes advantage of the powerful querying 
capabilities of a relational database to store and retrieve 
the transaction history and current state of the bank. It 
provides concurrency and automatic record locking to 
prevent data corruption. It provides better performance 
than flat-file solutions and is more fault safe because 
rollbacks are performed upon failure. Using a database 
allows for easy report queries, simplifies clients and 
provides the ability to merge other tables (i.e., node, user, 
machine or job information) into the reports. Sites can use 
built-in report utilities or create their own that use QBank 
subroutines or query the database directly.  
 
3.4.1. Database independence 
 

The bank subroutines use the Perl DBI module which 
is a database independent interface that allows any of a 
variety of relational databases to be used as the backend 
without modifying the source code. Although Postgres is 
currently the only database tested so far, other databases 
supported by the Perl DBI include: Adabase, DB2, 
Empress, Fulcrum, Illustra, Informix, Ingres, mySQL, 
ODBC, Oracle, Postgres, and Sybase. 

 
3.5. Server configurations 
 

When setting up QBank, any of a number of system, 
scheduler, bank server, and database configurations is 
possible (see Figures 3a-3d). You may have separate bank 
servers and databases for each system. You may have a 
central database seen by multiple bank servers or a central 
QBank server for all local schedulers.  
 
3.6. Internal class design 
 

All queries are handled by the QBank server daemon, 
qbankd. This server daemon accesses a library of Perl 
subroutines which are organized around the database 
tables which they manipulate. Although, not strictly 
written in object-oriented syntax, QBank follows an 
object-oriented design and will become fully class-based 
in subsequent releases. Figure 4 depicts the major object  
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Figure 3a. Separate banks and databases. 
Scheduler and bank may be on same or different 
hosts within a system. Databases may be on 
same or different servers. 
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Figure 3b. Central database. All systems within a 
site are managed by a single central database, 
though each system has its own QBank server. 
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Figure 3c. Central bank. All systems within a site 
are managed by a single central QBank server, 
but have separate schedulers. 
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Figure 3d. Central scheduler. All systems within 
a site are managed by a single central scheduler 
which manages access to all systems. 
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Figure 4. This figure depicts the major object 
classes (tables) manipulated by QBank. The 
circles represent primary classes, while the 
block arrows represent association classes. An * 
indicates checkpointed objects. 
 
classes (tables) manipulated by QBank and their 
associations to each other. 
 
3.6.1. Bank 
 

The Bank Class manipulates bank-level properties 
such as the current QBank version. 
 

3.6.2. Accounts 
 

An account can be viewed as a logical collection of 
computational credits allotted to a particular project or 
group of users.  
 
3.6.2.1. Account types 
 

Accounts may be of different types depending on the 
exchange relationship with other allocation managers 
(QBank 2.10). By default an account is of type local (see 
Figure 10a) and transactions affect only local accounts. 
Other valid account types exist to support access by users 
remote to the resource supplier and involve exchanges 
with other allocation managers. The meta account type 
(see Figure 10b) manages simple remote usage and 
supports a traceback capability (as do all of the non-local 
account types) to provide the submitter’s site with 
accounting information and policy enforcement. With the 
seesaw account (see Figure 10c), each debit causes a 
corresponding credit to be issued on the requester’s 
resource usable by the resource supplier. The forwarding 
account type (see Figure 10d) causes allocation charging 
to be forwarded to a remote central account which 
manages the allocations for multiple sites. In some cases 
an exchange rate must be applied to convert currency 
from the local bank to that of the remote bank. More 
detail about exchange mechanisms and non-local account 
types is given in Section 3.8. 
 
3.6.2.2. Account deactivation 
 

An account may be deactivated by the bank 
administrator wherein no scheduler transactions 
(reservations, withdrawals) can be made to it. Deposits, 
transfers, queries can still be performed on the account. 
 
3.6.2.3. Default machine access list 
 

At the account level a default list of machines that new 
allocations can access is defined and will be used when 
making deposits in the case that no list of allowed 
machines is specified. By default, the default machines 
list defaults to ANY meaning that the credits for that 
allocation are useable at any resource managed by that 
Allocation Manager.  
 
3.6.3. Users 
 

A user is simply a handle or id by which a user is 
known outside the bank and is generally their local 
system userid. A user may belong to more than one 



account (see 3.6.4 Subaccounts). The user class defines 
the mapping of a userid to the user’s full name, email 
address, phone number, and other information. 
 
3.6.3.1. Default accounts 
 

Each user may be assigned a default account to which 
withdrawals and reservations will be made when no 
account is specified. By default, the first account to which 
a user is added becomes the default account unless 
subsequently modified. 
 
3.6.4. Subaccounts 
 

A subaccount maps a user to an account. There may be 
multiple users per account and multiple accounts per user 
(see Figure 1). A subaccount can be thought of as a 
“member” of an account. 
 
3.6.4.1. Subaccount types 
 

A user status is associated with each user and may be 
one of enabled, disabled, admin or reserved. A 
subaccount may be individually disabled such that no 
scheduler transactions (reservations, withdrawals) can be 
made to that account in behalf of that user. An account 
administrator can perform account-level functions such as 
transfers among subaccounts, adding/removing account 
members, setting the deposit mask, and running account 
reports. Besides the user subaccounts, there are 3 types of 
special reserved subaccounts: RESERVE, KITTY, and 
ANY. 
 
3.6.4.2. The RESERVE pool 
 

The RESERVE subaccount is a pool which cannot be 
withdrawn from. This subaccount can be used by 
administrators to hold funds in reserve, or preallocate 
them but not activate them. The account administrator can 
readily transfer funds to and from the RESERVE and 
other subaccounts. Funds may be reserved and 
periodically dispensed as a way of ensuring that funds 
endure throughout a project cycle. The LATEST expiring 
allocation credits can be transferred to the RESERVE 
subaccount so that these tied-up funds are not the ones 
lost when early allocations expire. 
 
3.6.4.3. The KITTY pool 
 

The KITTY subaccount is a common pool from which 
any active subaccount may draw after having depleted 
their personally allotted credits. If all credits are placed in 

this pool, then all valid users have equal access to the full 
allocation. Withdrawals will only be taken from the 
KITTY after the user’s own subaccount funds are 
depleted. 
 
3.6.4.4. The ANY pool 
 

The ANY subaccount (QBank 2.10) can allow access 
by non-local users. Any credits placed in the special ANY 
pool are useable by any requestor regardless of whether 
they are members of the account. If a user is not specified 
for a quotation, withdrawal or reservation, the requesting 
user will be mapped to UNKNOWN and QBank will 
verify that enough credits exist in the ANY subaccount to 
fulfill the request. QBank will debit maximally from the 
user, KITTY, then ANY where possible in order to satisfy 
a reservation or withdrawal request – in that order. 
 
3.6.4.5. Deposit mask 
 

Associated with a subaccount is a deposit mask 
component which is used at the time of deposit to specify 
the distribution of funds among the subaccounts (member 
users) when not otherwise specified by the deposit. 
Deposit mask amounts are expressed as a percentage and 
must total 100 for the account. For example, for a deposit 
mask of {alice=>20, bruce=>30, KITTY=>50}, a deposit 
of 1000 nodeseconds would allocate 200 nodeseconds to 
alice, 300 to bruce and 500 to the KITTY pool. 
 
3.6.4.6. Hierarchical accounts 
 

A future release (tentatively QBank 2.11) will likely 
support account hierarchies where accounts may have 
parent-child relationships which other accounts. In such a 
configuration, the deposit mask will be used to trickle-
down deposits from higher levels to lower levels. 
Withdrawals and reservations will trickle-up through the 
parent’s user, KITTY and ANY subaccounts. 
 
3.6.5. Allocations 
 

An allocation is created (instantiated) when a deposit 
is made. An allocation is a collection of computational 
credits with common properties such as the type of 
allocation, the list of machines which can access them and 
their validity period. An account may have multiple 
allocations. Each allocation is further broken down into 
suballocations to the various subaccounts (see 3.5.6 
Suballocations). Allocations are uniquely specified by an 
allocation key.  



3.6.5.1. Allocation validity periods (activation and 
expiration) 

 
All credits are given an activation date and expiration 

date to define the period in which they may be consumed. 
By default an allocation is valid from – infinity to 
infinity. This feature can be used to assist users to meet a 
target usage distribution and prevent year-end resource 
exhaustion. Figures 5a-5c demonstrate a variety of 
possible allocation strategies.  
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Figure 5a. All disbursements are made into a 
single monolithic allocation. This could be 
boundless with no expiration if the sole purpose 
of the allocation was to track usage and 
accounting information. Or activation and 
expiration dates can be imposed while allowing 
for maximum flexibility of credit expenditure. 
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Figure 5b. In this example, all of the credits are 
made available for use at the beginning of the 
usage period. Portions of the credits are expired 
at regular intervals. This “use it or lose it” 
strategy can help prevent project-end resource 
exhaustion when all accounts which had 
underspent their credits simultaneously demand 
allocation fulfillment (by then impossible to 
deliver). 

Overlapping Staggered 
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Figure 5c. Staggered allocations can be used to 
ensure projects user their funds in an even 
proscribed rate. It is important that the 
allocations overlap somewhat to prevent 
problems at the points when the earlier 
allocations expire. 
 
3.6.5.2. Machine access lists 
 

Different users within an account may be given 
different machine access privileges by creating multiple 
allocations (See Figure 6). An allocation can allow access 
to a list of machines or may specify the keyword ANY 
which allows access from any machine managed by the 
Allocation Bank. 
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Figure 6. Multiple allocations can be created to 
distribute funds among the users variously for 
different sets of machines. 
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3.6.5.3. Payment mechanisms 
 

An allocation may be of type debit or credit (QBank 
2.10) (see Figures 7a-7c).  
 
3.6.5.4. Debit allocations 
 

By default, allocations are debit-based where credits 
are deposited in advance and used until they are gone (see 
Figure 7a). This might be grants based or on a pay first, 
use later basis. 
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Figure 7a. Debit based allocation. 

 
3.6.5.5. Credit allocations 
 

A credit allocation may be used to establish an 
overdraft buffer or used as a credit account on a use first, 
pay later basis. Credit-based allocations have a credit 
limit, supporting a negative balance up to some limit, 
where subsequent deposits may be made to balance the 
account (see Figure 7b). 
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Figure 7b. Credit based allocation. 

 
3.6.5.6. Overdraft protection 
 

Overdraft protection (where an account generally 
maintains a positive balance but is allowed to go negative 
to a predefined extent) can be implemented through a 
combination of debit and credit allocations (see 
Figure 7c). As a rule, debit allocations are always the 
debited before credit allocations, and deposits always fill 
up credit allocations first unless otherwise specified. 
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Overdraft Limit 
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Figure 7c. Overdraft protected allocation. 

 
3.6.6. Suballocations 
 

A suballocation represents the portion of an allocation 
allotted to an individual subaccount (user). Ultimately, it 
is within the suballocation that all balance amounts are 
actually stored. Account and allocation balances are just 
aggregations of suballocation amounts. The collection of 
funds within each suballocations inherits a set of 
properties such as the type and the account, user, 
machines, and time period for which it is valid. It is the 
suballocation that stores and controls the overdraft 
amount (credit limit). 
 
3.6.6.1. Suballocation strategies 
 

Several strategies are possible for dividing the 
computational credits among the users within an account. 
One could attempt to distribute all of the funds 
individually to the users so all had access to a fair share 
of the credits (see Figure 8a). A potential drawback is that 
if a user does not use much of his/her funds, they will 
either go wasted or require an administrator to transfer 
them to other users. All members can be given equal 
access to all of the funds by putting them in the common 
KITTY pool (see Figure 8b). This way one will not likely 
have credits go unused. However, you stand the chance 
that some users will unfairly deplete the allocation, 
leaving nothing for the others. One could equally divide 
most of the funds, while placing the remainder in the 
KITTY (see Figure 8c). This will ensure that all users get 
at least a certain portion, while allowing high burn-rate 
users to use the overflow. This concept could be extended 
to place half or a majority of the funds in the common 
KITTY, but parcel out a small portion to each user in 
order to prevent starvation (see Figure 8d). The account 
administrator (project lead) may choose to withhold a 
portion of the original allocation in the RESERVE pool to 
distribute later as deemed necessary (see Figure 8e). For 
the case where resource users do not have local userids or 
it is not important to restrict who has access to the 
allocation, all credits may be placed in the special ANY 
subaccount (See Figure 8f). 



Split Equally Among Users

Amy
34%

Bob
33%

Charlie
33%

Amy
Bob
Charlie
KITTY
RESERVE
ANY  

Figure 8a. All users given equal. 
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Figure 8b. All in common KITTY. 
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Figure 8c. Minority to KITTY. 
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Figure 8d. Majority to KITTY. 
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Figure 8e. Holdings in RESERVE. 
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Figure 8f. All funds placed in ANY. 

 
3.6.7. Reservations 
 

Before a job runs, the bank will attempt to place a 
reservation or hold (make a pending withdrawal) on the 
account in behalf of the requesting user. Subsequent jobs 
will also place reservations while the available balance 
(balance-reservations) allows. When a job completes, the 
reservation is removed and the actual withdrawal is made 
to the account. This procedure ensures that jobs will only 
run as long as they have sufficient reserves. If the user 
does not have sufficient funds, the job will be deferred 
until additional funds are deposited into the user’s 
account. 

 
3.6.8. SubReservations 
 

A reservation may have multiple subaccount 
components (subreservation) such as the user component, 
a KITTY component and an ANY component. This is 
necessary because withdrawals and reservations may 
partly be satisfied by the user’s funds and partly by other 
funds from other sources such as the KITTY or ANY 
pool. 
 



3.6.9. Quotations 
 

The ability to obtain a quote supports a meta-scheduling 
environment where it may be useful to determine how 
much it will “cost” to run a particular job with the specified 
requirements. A quote request can guarantee a charge rate 
based on the projected wallclock time and other 
parameters. A quote returns the projected cost as well as a 
quotation identifier which can be specified with the 
subsequent reservation and withdrawal to secure the 
guaranteed charge rate, prorated according to actual 
wallclock time used. The quote will expire after 
WallClockTime+GraceTime seconds and a job will have 
to complete before that time in order for QBank to honor 
the quote. 
 
3.6.10. ChargeRates 
 

When a withdrawal, reservation or quotation request is 
received, a call is made to the external charge() routine. 
All parameters of the request (Processors, WallClock 
Time, User, Account, etc.) are made available to the 
charge algorithm. Any arbitrary formula may be used to 
calculate the appropriate charge. Besides static rates 
which can be specified directly within the external charge 
routine, QBank provides a table for storing configurable 
charge rates, accessible by subroutines internally and 
through the QBank API. These charge rates may be 
simple consumable resource multipliers such as defining 
costs/unit for DISK, MEMORY, PROC, or NETWORK 
used. The names are arbitrary and can be customized for 
the site. The QBank ChargeRate class also supported 
multi-valued charge factors such as CLASS (which may 
have values like interactive, batch, or development), QOS 
(Quality of Service), TIME (i.e., primetime vs. non-
primetime), NODETYPE, and MACHINE. Dynamic 
charging rates can be derived directly within the charge 
routine or it can query one of the ChargeRate factors 
which could be dynamically updated by an external 
process. For example, a BACKLOG multiplier could be 
stored in the ChargeRate table as a simple valued 
multiplier (which is periodically updated by a cronjob) or 
the BACKLOG multiplier can be derived dynamically by 
a query to the scheduler from within the charge routine. 
 
3.6.11. CheckPoints 
 

Checkpoints can be created in order to preserve the 
state of QBank for that time. You may have as many 
checkpoints as you have diskspace for. These checkpoints 
may be used to restore QBank to a previous state or to 
query previous state information, such as in previous 

balance calculations. It is highly recommended that 
checkpoints be created before making risky modifications 
to the bank data that you may want to undo. It is also 
recommended that regular checkpoints be made so that 
past bank statement balances can be derived while parsing 
a minimum of transactions. The transaction records are 
not checkpointed. 

 
3.6.12. Transaction logs and reporting 
 

Records of all scheduling related and balance 
modifying transactions are stored in the database for 
accounting and reporting purposes. Flexible querying 
mechanisms can extract all past transactions matching 
various constraints. A bank statement client is provided 
(qbs) which reports beginning and ending account 
balances for any arbitrary time period, as well as sum-
maries of all debits and credits issued within that period. 
Other clients are provided to report balances, and the cur-
rent status of allocations, users, accounts, reservations, etc. 
 
3.7. Earliest credit expenditure 
 

An account containing credits with varying expiration 
dates will automatically satisfy all debit requests using the 
credits with the earliest expiration date. To do so requires 
that appropriate transfers be made amongst the various 
subaccounts in order to maintain fairness. The following 
section (see Figures 9a-9d) considers some design aspects in 
order to elucidate the concept of earliest credit expenditure.  

For the example, in Figure 9a, we see three allocations 
of 100, 100 and 200 credits with expiration dates at the 
end of January, February, and March of 2003 
respectively. Within each allocation, we have 
suballocations to various users (subaccounts), such as 
scott, dhazen, valley and KITTY (the common pool). A 
particular subaccount’s balance is calculated by adding up 
all of the subaccount’s suballocations, and it can be seen 
that the scott subaccount has a total of 150 credits, with 
40 credits expiring at the end of January, 20 in February, 
and the rest (90) in March.  

If scott was to run a job which required a withdrawal 
of 180 credits, it would seem at first glance appropriate to 
simply zero out all of scott’s 150 credits and then subtract 
an the end of January when the remaining 50 credits in 
Allocation 1 would simply vanish because they had not 
been used by their expiration date. But well over 100 
credits had been expended. It would be far more desirable 
if somehow allocations are always used from the earliest 
expiring allocation so that when an allocation expires, 
you lose as few credits as possible. But we can’t take 
credits away from the other subaccounts! 



 

 
Figure 9a. Wasteful expirations occur without earliest credit expenditure. 

 
Now, it would admittedly seem to be far simpler if we 

neglected the concept of suballocations altogether (in 
effect ignoring the center matrix) and simply maintain 
the appropriate totals separately by subaccount and by 
allocation (see Figure 9b). For the above debit of 180, all 
we would have to do is debit scott’s balance by 150, 
KITTY’s balance by 30, and in parallel we would debit 
allocation 1 by 100 credits and allocation 2 by 80. As 
long as we can make sure the allocation subtotals and the 
subaccount balances add up to the same total, we would 
be all right, wouldn’t we? Well, unfortunately we will 
have lost the ability to maintain fairness when allocations 
are expired. Consider what happens at the end of 
February when Allocation 2 expires. It is easy enough to 
zero out the 20 credits in allocation 2, but how much do 
we debit from which subaccounts to keep them in 
balance with the allocations? We could spread the debit 
evenly (taking away roughly 20/3 from each of the 
remaining plenished subaccounts). But doing this would 
not be fair to the subaccounts which did use up their 
share of the expiring credits.  

Imagine that scott had debited 50 instead of 180. 
Allocation 1 would have 50 credits remaining and scott’s 
balance would be 100. When allocation 1 expired we 
have to take away the remaining 50 credits from the 
subaccounts and it does not seem reasonable to take 
away an additional (50/4=12.5) credits from scott, since 
he has already withdrawn more than his  

share of the expiring credits. If you have to pick 
subaccounts to lose the credits, it should be those who 
did not use them, since the whole intent of expirations is 
to enforce a “use it or lose it” policy. Scott used his. He 
should not be further penalized. Without the central 
matrix of suballocation information, you have no way to 
know how much should be removed from the 
subaccounts when allocations expire. 

QBank ensures that the credits will always be taken 
from the earliest expiring allocation, while 
simultaneously maintaining fairness at the time of 
expiration. To do this, when a debit is performed, QBank 
makes a series of inter-allocation/intra-subaccount 
transfers where sooner expiring credits for the debiting 
user are substituted for later expiring credits for the other 
subaccounts in a round-robin fashion. In this way, the 
debiting user happily converts enough of his credits into 
the earliest expiring type (since he is just about to spend 
them anyways) whereas the other users are more than 
happy to have some of their credits changed to expire 
later. All subaccount balances and allocation subtotals 
remain the same throughout the process. Figure 9c 
demonstrates the mechanics of a pathological example. 
For those who do not have the tenacity to follow this 
elaborate example, please skip to the next section. Again 
in this example, scott needs to make a withdrawal for 
180 credits (30 of which must come from the KITTY).  

Allocations Expires scott dhazen valley KITTY Total 

1 Jan 31 2003 40 30 20 10 100 
2 Feb 28 2003 20 20 30 30 100 
3 Mar31 2003 90 40 10 60 200 

Balance  150 90 60 100 400 

Allocations Expires scott dhazen valley KITTY Total 

1 Jan 31 2003 0 30 20 0 50 
2 Feb 28 2003 0 20 30 10 60 
3 Mar31 2003 0 40 10 60 110 

Balance  0 90 60 70 220 

(-40)
(-20)
(-90)

(-20) 
(-10) 



Allocations Expires scott dhazen valley KITTY Total 

1 Jan 31 2003 100 

2 Feb 28 2003 100 

3 Mar31 2003 

 

200 

Balance  150 90 60 100 400 

 
Figure 9b. Fairness at expiration is compromised if the suballocations are not tracked. 

 
Refer to Table 1 of Figure 9c. In the first round of 

transfers between allocations 1 and 2, scott’s 
suballocation in the second allocation is of 20 credits. 
There are three subaccounts with non-zero suballocations 
in the first allocation, so the largest integer transfer we 
can evenly perform to all other subaccounts is 
int(20/3)=6. Accordingly, 6 credits are transferred from 
allocation1 to allocation2 for each of dhazen, valley and 
KITTY, while 18 credits are transferred from allocation2 
to allocation1 for scott. The last 2 credits in scott’s second 
allocation are left there since they cannot be evenly 
distributed among the subaccounts. They will be used 
later. It can be noted by the results depicted in table 2 that 
all of the allocation totals and subaccount balances have 
remained the same throughout the procedure. 

Refer to Table 2 of Figure 9c. Next we consider the 
credits that can be transferred between allocations 1 and 
3. Scott has 90 credits to transfer which would is equally 
divisible by 3 (30), but not all suballocations in 
allocation1 have 30 credits to exchange so a round robin 
technique must be use to continuously make even 
transfers among the non-zero suballocations. KITTY has 
the least amount of credits with 4, so we “spin” 4 credits 
down for each of dhazen, valley and KITTY, while we 
spin 12 credits up for scott. 

Refer to Table 3 of Figure 9c. Continuing this process 
while non-zero suballocations exist in allocation1 for the 
other subaccounts, the minimum non-zero suballocation 
is 10 (valley) so 10 credits are spun down for valley and 
dhazen and 20 credits spun up for scott. 

Refer to Table 4 of Figure 9c. The remaining 10 
credits in allocation1 (dhazen) are substituted for credits 
in allocation3. 

Refer to Table 1 of Figure 9d. Now that all 
suballocations are exhausted in the earliest expiring 
allocation (allocation1), we move to the next earliest 
expiring allocation (allocation2). We must spin 48 of 
scott’s credits from allocation3 to allocation2. To issue 
the transfers evenly among the three other subaccounts, 
48/3=16 credits are spun down for each of dhazen, valley 
and KITTY while 48 credits are spun up for scott.  

Refer to Table 2 of Figure 9d. For the 150 credits that 
must be debited from scott, it can now all be taken out of 
the earliest expiring allocations. With scott’s funds 
depleted we must make up the remaining 30 credits from 
the KITTY subaccount. Again, we want to make sure that 
all credits used are those which are the earliest to expire. 
Hence, KITTY needs to trade 10 later expiring credits for 
earlier expiring ones. Scott’s funds are depleted, so we 
spin 5 credits down for each of dhzaen and valley, and 
spin 10 credits up for KITTY. 

Refer to Table 3 of Figure 9d: At this point we can 
take the 30 credits we need from KITTY. 

 

Allocations Expires scott dhazen valley KITTY Total 

1 Jan 31 2003 0 

2 Feb 28 2003 20 

3 Mar31 2003 

 

200 

Balance  0 90 60 70 220 

(-150) 

(-80) 

(-100) 

(-30) 



  Allocations Expires scott dhazen valley KITTY Total 
1 Jan 31 2003 40 30 20 10 100 
2 Feb 28 2003 20 20 30 30 100 
3 Mar 31 2003 90 40 10 60 200 
Balance 150 90 60 100 400 

Allocations Expires scott dhazen valley KITTY Total 
1 Jan 31 2003 58 24 14 4 100 
2 Feb 28 2003 2 26 36 36 100 
3 Mar 31 2003 90 40 10 60 200 
Balance 150 90 60 100 400 

Allocations Expires scott dhazen valley KITTY Total 
1 Jan 31 2003 70 20 10 0 100 
2 Feb 28 2003 2 26 36 36 100 
3 Mar 31 2003 78 44 14 64 200 
Balance 150 90 60 100 400 

Allocations Expires scott dhazen valley KITTY Total 
1 Jan 31 2003 90 10 0 0 100 
2 Feb 28 2003 2 26 36 36 100 
3 Mar 31 2003 58 54 24 64 200 
Balance 150 90 60 100 400 

18 6 6 6

12 4 44

10

20 10

10

10

 
Figure 9c. Example of spinning suballocation amounts for earliest credit expenditure. 

 
Allocations Expires scott dhazen valley KITTY Total 

1 Jan 31 2003 100 0 0 0 100 
2 Feb 28 2003 2 26 36 36 100 
3 Mar 31 2003 48 64 24 64 200 

Balance  150 90 60 100 400 

 

Allocations Expires scott dhazen valley KITTY Total 

1 Jan 31 2003 100 (-100) 0 0 0 100 
2 Feb 28 2003 50 (-50) 10 20 20 100 
3 Mar 31 2003 0 80 40 80 200 

Balance  150 90 60 100 400 

 

Allocations Expires scott dhazen valley KITTY Total 

1 Jan 31 2003 0 0 0 0 0 
2 Feb 28 2003 0 5 15 30 (-30) 50 
3 Mar 31 2003 0 85 45 70 200 

Balance  0 90 60 100 250 

 

Allocation Expires scott dhazen valley KITTY Total 

1 Jan 31 2003 0 0 0 0 0 
2 Feb 28 2003 0 5 15 0 20 
3 Mar 31 2003 0 85 45 70 200 
Balance  0 90 60 70 220 

 

48 16 16 16

5 5 10

 
Figure 9d. Example of spinning suballocation amounts for earliest credit expenditure continue. 

 



Refer to Table 4 of Figure 9d. Thus, we have 
accomplished our goals in strictly taking all funds from 
the earliest expiring allocations, since when allocation1 
expires, nothing will be lost, with all of the rest coming 
from allocation2. All totals and balances have remained 
unmodified except for the effects of the debits. And 
fairness will be preserved, since when allocation2 expires, 
neither scott or KITTY will lose anything (they used 
theirs), and valley will lose 10 more credits than dhazen, 
which is the same differential loss they would have 
experienced were it not for the “quantum spin” process.  
 
3.8. Exchange with other allocation banks 
 

In order for an allocation system to function in a job 
scheduling environment consisting of multiple 
administrative domains, its design has to adequately 
address performance, scalability, security, and trust 
issues. It should be decentralized, allowing both the 
requesting site and the providing site appropriate controls 
and full accounting. All parties should be able to act in 
their own best interest without having to place blind trust 
in the other party. QBank 2.10 introduces support for 
several allocation exchange models in which allocation 
managers must interact with each other for the transfer of 
computational credits and/or accounting information. This 
capability is in a prototype stage and much work remains 
to properly resolve many of the issues described earlier. 

Some of the facilities to support such an environment 
have been discussed under previous sections. The 
quotation mechanism (see Section 3.6.9) allows a meta-
scheduler (or GRID Resource Broker[2]) to ask the 
allocation manager how much it is going to cost to run the 
job on a particular resource. The quote_id returned by the 
query can be used to guarantee the quoted rate. Support 
exists to allow users from a remote site to run jobs 
without having to have local accounts. One could make 
funds available in the special ANY subaccount (see Sec-
tion 3.6.4.4) or use preallocated pseudo-user subaccounts. 
Accounts may make funds available with a debit or credit 
based payment mechanism (see Section 3.6.5.3). Default 
accounts (see Section 3.6.3.1) allow users to run jobs 
without having to know which account to specify. A 
traceback mechanism is supported for all non-local 
account types (meta, seesaw or forwarding) (see 
Sections 3.8.2-3.8.4). This capability provides the 
requesting site the ability to both track the resources used 
by the job on the providing site and to control which local 
users can use how much of the available resources on the 
remote site.  

In this section we shall describe some of the possible 
account configurations that could be considered to handle 
requests by remote users.  
 
3.8.1. Local account 
 

We should first consider the use of the default local 
account type (see Figure 10a). This account could just as 
well serve remote users as local users. The site may 
require that all remote users go through the process of 
obtaining a local userid and be added to the account, they 
might set up a special userid for external users, or the 
account could be configured to supply resources to any 
user by placing credits in the special ANY subaccount. 
This configuration assumes that the requesting site 
explicitly trusts the providing site to manage the 
accounting and access control. 
 

localSITE1 
Local 
Account 

SITE1 

 
Figure 10a. Local account. On-site users 
accessing local resources generally use local 
debit accounts. 
 
3.8.2. Meta account 
 

Perhaps a more general configuration for a meta 
account is expressed in Figure 10b. Let’s examine a 
hypothetical situation in detail. Suppose kenneth from 
SITE2 wants to submit a job to a meta-scheduler and he 
does not know where it is going to land. His locally 
accessible meta-scheduler figures out which systems (to 
which he has access) have the resources to satisfy the job 
requirements and by querying schedulers and requesting 
quotes, determines that the best (perhaps soonest and 
cheapest) place for him to run would be on a particular 
system (CLUSTER1) at SITE1. It could determine by a 
query to an information service (or within the job 
command file) that, for this system, kenneth has access to 
the account metaSITE2 as user SITE2user. The 
metaSITE2 account has been previously setup at SITE1 
as a meta account consisting of a debit allocation for 
running remote jobs from SITE2. The allocation is good 
for a year and specifies that its credits are useable on 
SITE1’s production IBM system and the Linux cluster.  



 

metaSITE2 runSITE1 
Meta 
Account 

SITE1 SITE2

Traceback 
debit 

 
Figure 10b. Meta account. Users from other sites 
could access a meta-account using a generic 
userid (SITE2user) with a traceback debit 
providing the submitter’s site with accounting 
information and policy enforcement. 
 

If the submitting site (SITE2) desires accounting 
feedback and control over who uses its externally 
available resources, then the meta-scheduler should be 
configured to pass along traceback information with the 
job requests. For this example, we will assume that it does 
and SITE2 supplies the hostname and port for its local 
allocation manager and the user (kenneth) and account 
(runSITE1) that should be referenced in the traceback 
information when staging the job to the scheduler at 
SITE1. Before a job can start, the scheduler at SITE1 
attempts to make a reservation (or pending withdrawal) 
for the job. Since traceback information was provided and 
metaSITE2 is a non-local account type, the allocation 
manager at SITE1 will first try to make a reservation for 
the job against user kenneth and account runSITE1 at 
SITE2. The runSITE1 account might have been setup at 
SITE2 as a local account with a single credit-based 
allocation with an enormous credit limit. It is used mainly 
to track remote utilization and limit which users are 
allowed to access the remote account. Fortunately, 
kenneth is a valid member of the account runSITE1, the 
destination of the job CLUSTER1@SITE1 matches the 
machine access lists, and he has not run up against his 
external usage limit so the reservation succeeds. Since the 
traceback reservation was successful, a reservation is now 
made against metaSITE2. If the traceback reservation had 
failed, presumably the requesting site did not want that 
user to use their externally available cycles, and the job is 
not allowed to start. Both a local and traceback 
reservation transaction are recorded on the SITE1 side 
and a reservation transaction including details about the 
providing account has been recorded on the SITE2 side. 
The job is allowed to run. 

When the job completes, the account on the providing 
system (SITE1) is debited, followed by an attempt to 

make a debit to the traceback account at SITE2. 
Associated reservations are removed. If SITE2 is unable 
to process the traceback withdrawal, the withdrawal still 
should succeed for SITE1 since it did indeed have its 
resource used. The success of the earlier traceback 
reservation stands as sufficient proof that SITE2 wanted 
the job to run, and we know it has successfully recorded 
the earlier pending withdrawal. If all is successful, both a 
local and a traceback withdrawal are recorded on the 
SITE1 side and a withdrawal transaction including details 
about the providing account will have been recorded on 
the SITE2 side.  
 
3.8.3. Seesaw account 
 

One possible exchange arrangement that could be 
imagined is one in which debits to one account are 
mirrored as credits to the other and vice versa. This could 
be thought of as an automated bartering arrangement 
between two sites. Let’s consider the seesaw account type 
depicted in Figure 10c. In this example, cycles used at 
SITE1 by SITE2 cause credits to be acquired at SITE2 
useable by SITE1. The reverse arrangement can be 
similarly established. An exchange rate can be applied to 
convert currency from one allocation domain to another. 
Once again, a traceback account can be specified with the 
transaction.  
 
 

metaSITE2 metaSITE1 

runSITE1 

Seesaw 
Account 

SITE1 SITE2

Traceback 
debit 

Seesaw 
credit 

 
Figure 10c. Seesaw account. In a seesaw 
arrangement, cycles used at SITE1 by SITE2 
cause credits to be acquired useable at SITE2 by 
SITE1. A traceback account can be specified 
with the transaction. 
 

Let’s again assume kenneth from SITE2 submits a 
“meta job” and it winds up landing at SITE1 to run as 
SITE2user under the account metaSITE2. In this 
example, metaSITE2 and metaSITE1 are both of account 
type “seesaw” and both have been primed with some 
initial amount of cycles useable on the opposite site. At 
the start of the job a traceback reservation is made at the 
requesting site (SITE2) followed by the reservation at the 
providing site (SITE1), in just the same way as in the 
example for the “meta” account type. Remember that the 
traceback transaction is optional and will not be attempted  



if traceback information is not sent by the scheduler to the 
allocation manager at SITE1 as part of the reservation and 
withdrawal requests.  

When the job completes, a withdrawal is issued to the 
allocation manager for the resource. QBank first debits 
the traceback account (if passed), primarily in order to 
provide the requesting site with utilization and charging 
information. Clearance to run the job had been obtained 
at the previous traceback reservation step. Next QBank 
makes a credit to the exchange account (metaSITE1), 
proportional to the size of the pending debit to 
metaSITE2 at SITE1, taking into account any exchange 
rate between the site currencies. Finally, the debit to 
metaSITE2 is made. If the deposit (credit) into 
metaSITE1 fails, then the metaSITE2 seesaw account is 
charged double to make up for the lack of compensation 
on the other end of the seesaw. Reservation removal and 
accounting occurs automatically as part of the withdrawal 
process. As a result of kenneth’s usage at SITE1, 
someone at SITE1 should now be able to run a 
comparable job on a resource at SITE2. 
 
3.8.4. Forwarding account 
 

Another mechanism that might be employed is one in 
which allocation charging is forwarded to a central 
account which manages the allocations for multiple sites. 
For this example, kenneth again submits a job to an 
enterprise wide meta-scheduler (one that manages all 
ORG resources for example and his job is staged to run 
on a resource at SITE1. He knows he wants to run on a 
ORG resource and since an account by the name of 
metaORG exists on all ORG resources, he can safely 
specify an accountname of metaORG for his job. As 
before, at the reservation stage, a traceback reservation is 
made to runORG so SITE2 has a local record of the 
transaction and to essentially establish permission to run 
the job in SITE2’s behalf. Upon success, a reservation is 
made against metaORG at SITE1 and the job is started.  
After the job completes, it is time to charge for the 
resources it expended. A traceback withdrawal is 
preferred to the runORG account at SITE2 to keep its 
books in sync and account for its external utilization. 
Since the ultimate source of credits across the ORG 
complex is managed by the master allocation manager 
running at ORG headquarters (or mirrors thereof), the 
main purpose of the metaORG account at SITE1 is to 
simply forward all debits to the masterORG account. 
Other important side-effects of the forwarding account 
are that it provides local site accounting for the resources 
used at SITE1 and at the same time SITE1 retains full 
local control of the quality and quantity of the use of its 

resources and by whom they may be used. The 
forwarding account (metaORG) might well be a credit 
based account which enforces a credit limit so remote 
users don’t overutilize their system. It would determine 
what machines at SITE1 are to be made available to the 
ORG compute pool. The masterORG account could be a 
debit-based account of type local and simply handles 
forwarded withdrawals and maintains allocations 
disbursed to various users (SITE2user, SITE1user, etc.). 
After QBank forwards the debit to ORG, it then debits its 
own account. It has already had an opportunity to enforce 
all of its screening and policy restrictions during the 
reservation step before the job ran. 
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Figure 10d. Forwarding account. Allocation 
charging is forwarded to a central account 
(masterORG) which manages the allocations for 
multiple sites. The forwarding account 
(metaORG) might well be a credit based account 
which enforces a credit limit and gives the 
resource supplier local policy control and 
accounting. The submitter’s site can again 
request a traceback debit so they can track and 
restrict their offsite allocation usage. 
 
3.9. Clients and interfaces 
 

There are two levels of access to interacting with 
QBank – high level command-line client access and low-
level subroutine access. 
 
3.9.1. High level command interface 
 

The high level commands are simple Perl wrappers for 
the lower level access. These provide unix-style 
commands that allow you to create, query, modify, delete 
and manipulate QBank objects and accept flag arguments. 
Examples include: 



qbalance - shows QBank account balance 
qbalance [-a account] [-u user] [<-M> machine] [-h] 
 
qwithdraw - make a withdrawal  
qwithdraw [-a account] [-C class] [-d disk] [-j jobid]  
[-M machine] [-m memory] [-N nodetype] [-n numnodes] 
[-p procs] [-Q qos] [-r ``reason’’] [-u user] [-w wall-
clock-time] [-z amount]  
 
qdeposit - make a deposit to the QBank  
qdeposit [-k allockey] [-s startdate] [-x expirationdate]] 
[-M allowmachines] [-r “reason”] [-u user] [-a] account 
[-z] amount 
 
qrefund - make a refund to an account  
qrefund [-a account] [-u user] [-z refundamount]  
[-M machine] [-f] [-r ``reason’’] [[-j] jobid]  
 
qtransfer - transfers credits between subaccounts  
qtransfer [-el] [-M machines] [-a] account  
[-z] transferamount [-f] fromuser [-t] touser  
 
qmkacct - create an account  
qmkacct [-AI] [-M defaultmachines] [-a] account  
 
qlsacct - lists accounts and their properties.  
qlsacct [-a account] [-qvAI]  
 
qchacct - change account properties 
qchacct [-A] [-I] [-m “user1=percent ....”]  
[-M mach1:mach2:...|ANY] [-a] account  
 
qrmacct - delete accounts  
qrmacct [-a] account  
 
qlsuser - lists user information  
qlsuser [-dDEnPqv] [[-u] user]  
 
qchuser - change user attributes  
qchuser [-d default_account] [-E “emailaddress”]  
[-n “realname”] [-P “phonenumber”] [-D “description”] 
[-u] user  
 
qmkuser - define a user to the QBank system  
qmkuser [-d default] [-E ``emailaddress’’] [-n 
``realname’’] [-P ``phonenumber’’] [-D ``description’’]  
[-u] user  
 
qrmuser - remove a user.  
qrmuser [-a account] [-u] user  
 

qmkmember - add a user to an account  
qmkmember -a account [-S status] [-u] user qlsmember 
 
qlsmember - lists subaccount information  
qlsmember [-a account] [-qv] [[-u] user]  
 
qchmember - change subaccount status  
qchmember -a account -S status [-u] user  
 
qrmmember - remove a user from an account.  
qrmmember -a account [-u] user  
 
qlsalloc - list allocations  
qlsalloc [-a account] [-M machines] [-AIh] [[-k] allockey]  
 
qchalloc - change allocations  
qchalloc [-s startdate] [-x expirationdate]  
[-M mach1:mach2:...|ANY] [-k] allockey  
qrmalloc - remove allocations  
qrmalloc [-I] [[-k] allockey]  
 
qmkres - make a reservation  
qmkres [-a account] -u user -p procs -w wall-clock-time 
[-C class] [-d disk] [-M machine] [-m memory]  
[-N nodetype] [-n numnodes] [-Q qos] [-r ``reason’’]  
[-x expirationtime] [-j] jobid  
 
qlsres - list reservations  
qlsres [-NX] [-a account] [-M machine] [[-j] jobid]  
 
qrmres [-X] [-j] jobid]  
qrmres - remove reservation  
 
qmkquote - make a charge quote  
qmkquote [-C class] [-d disk] [-M machine] [-m memory] 
[-N nodetype] [-n numnodes] [-Q qos] [-r ``reason’’]  
[-a account] -u user -p procs -w wall-clock-time  
 
qcheckpoint - manipulate checkpoints  
qcheckpoint [-d checkpointkey] [-l] [-r “reason”]  
 
qrestore  
qrestore - restores a checkpoint  
 
3.9.2. Low level subroutine interfaces 
 

Direct access to the internal subroutines allow passing 
of key-value pairs as parameters and allow more 
sophisticated use of the allocation manager. These may be 
accessed via a command line interface allowing these 
calls to be scripted: 



qbank - command line QBank subroutine interface  
qbank Command_String  
 
Or via a prompt-like interactive interface: 
 
qprompt - interactive QBank subroutine interface  
qprompt  
 
3.10. Transaction logging and accounting 
 

All transactions affecting the allocations (deposits, 
withdrawals, transfers, etc.) are recorded in the database 
in a transaction log. This information includes basic usage 
information for jobs and reservations such as number of 
processors used/requested, wallclock time, class, 
machine, etc. Additionally, all QBank requests and 
responses are recorded in rotating flat files. 

A command (qtxns) or a low-level subroutine 
(get_txns via qbank) allows the querying of all usage and 
transactions made to the allocation manager. This 
interface can be used to generate usage and allocation 
statistics which can be imported into other-party chart and 
graph programs. 
 
qtxns - transaction information  
qtxns [-a account] [-e enddate] [-k key|jobid]  
[-M machine] [-s startdate] [-t txntype] [-u user]  
 
3.11. Reports and usage queries 
 

A sample bank statement program is provided which 
generates a report for a given account over an arbitrary 
period in the past. This report indicates the beginning and 
ending balances for the period, the total debits and credits 
for the period, and then provides credit and debit detail 
including usage broken down by user. 
 
qbs – QBank bank statement  
qbs -a <ACCOUNT> [-e <ENDDATE>]  
[-s <STARTDATE>] 
 

Other organization-specific reports can be easily built 
to synthesize the information generated by qtnxs (or 
qbank get_txns) and the other bank query commands 
(qlsacct, qlsalloc, etc.)  
 
3.12. Security, authentication and 

communication protocols 
 

QBank communicates over TCP sockets using an 
octet-counting scheme for framing, key=value pairs as the 

data representation, and by appending a checksum 
generated by a shared secret for security. 
 
3.12.1. Checksum security 
 

Clients calculate a checksum on the command request 
to securely pass invokers credentials to the bank server. 
The checksum is dynamically generated for the client 
request by a setuid-root program based on the contents of 
the request and who invoked it. 
 
3.12.2. Administration levels 
 

QBank supports three levels of authorization – user, 
account, and bank. 
 
3.12.2.1. Bank level administration  
 

Bank admins are authorized to perform all 
administrative functions such as creating accounts, 
making deposits, giving refunds, etc. 
 
3.12.2.2. Account level administration  
 

Account admins can perform account-level functions 
such as transfers among subaccounts, adding/removing 
account members, setting the deposit mask, running 
account reports.  
 
3.12.2.3. User level administration 
 

Users can run commands that pertain to their own 
subaccounts and transactions such as determining their 
balance and current usage.  
 
4. Tested environments and integration 

with resource management systems 
 
4.1. Tested environments 
 

To date QBank has been tested in the following 
environments: 
 
OpSys        Database  Scheduler 
--------------      -------------- -------------- 
AIX 4.2-3      Postgres  Maui Scheduler 
RedHat Linux 6.1-7.1 Postgres  Maui Scheduler 
 



4.1.1. Operating systems 
 

To date QBank has been in production use on the AIX 
operating system (versions 4.2 and 4.3) and on RedHat 
Linux 6.1 and 7.1. The author is unaware of attempts to 
run under any other operating system but believes that 
QBank should function with very little modification 
under any of the popular UNIX brands. 
 
4.1.2. Databases 
  

The database that QBank has thus far been written and 
tested on has been Postgres. However, as described in 
Section 3.4.1, QBank was designed to use the Perl DBI 
and should support a number of different databases by 
just changing the connection handle provided the 
database supports transactions, locking, table joins and 
concurrent use of multiple handles. Even some of these 
limitations could probably be worked around with minor 
modifications. 
 
4.1.3. Schedulers and resource managers 
 

In the configurations to date, the Maui Scheduler [5] 
has been used to interface to QBank. The Maui Scheduler 
has an integrated allocation bank interface supporting the 
use of QBank by the setting of simple configuration 
parameters. Maui is commonly used to replace the 
scheduling component of resource managers such as PBS 
[6] or LoadLeveler [7] and has been used successfully 
with both resource managers. Although the author highly 
recommends a configuration involving the Maui 
Scheduler, QBank should be able to be successfully used 
from a variety of other resource management 
configurations. 
 
4.1.4. QBank invocations during the life of a job 
 

The following describe some basic interaction 
requirements useful when considering if QBank will work 
in your environment. 
 
4.1.4.1. Job submission time [optional -- recommended]  
 

It is useful to check a user’s balance and ensure the 
user’s account has enough cycles to run the job at the 
time of the submission so that you can fail at that point 
with a useful message. Otherwise, the job may fail at start 
time, where it could be potentially harder to route the 
message back to the user, and the job had to sit through 
the queue when it had no chance to run. This phase 
requires the resource manager to support a submit filter or 

a wrapper could be created for the submit command in 
which to run the QBank balance query. 
 
4.1.4.2. Job start time [optional -- highly recommended]  
 

At the start of a job QBank creates a hold on the users 
account (reservation) for the maximum amount the job 
could run for (based on wallclock limit). This step does 
not have to be performed but it is highly recommended 
because this mechanism prevents jobs from using more 
credits than they have. In order to make a QBank 
reservation at the start of a job, the scheduler must be able 
to run either a command line process or make a C call to 
the QBank API at job start time. It is also possible to 
make the reservation at submit time, though there could 
be some negative effects of doing it this way. 
 
4.1.4.3. Job completion [required]  
 

When a job completes, the reservation is removed and 
the final withdrawal is made (as a single step). This 
would ideally be handled by the scheduler, again either 
by a system command-line call or through the API 
(recommended). As an alternative for scheduler/resource 
manager combinations that cannot be recompiled and 
who do not have native support for allocation managers, a 
feedback or notification mechanism could potentially be 
used to make the withdrawal.  
 
5. Future directions  
 

Some of the important areas in which to focus 
development effort include: 
 
Hierarchical accounts 
Delegation based security  
Research how to support flatfile databases 
Performance improvements (data caching, split txnlog 
table) 
Peer-to-peer communication infrastructure 
Machine access deny list 
Web-based GUI 
Interface to GRID economy services 
 
6. Summary 
 

QBank is a unique dynamic reservation-based 
allocation management system which has proven very 
effective in managing the utilization of computational 
resources in a multi-project environment. QBank allows 
the organization to guarantee greater fairness and enforce 
mission priorities by associating a charge with the use of 



computational resources and allocating resource credits 
which limit how much of which resources may be used 
when and by whom. It tracks resource utilization and 
allows for insightful planning. It also has great potential 
for its ability to be used in the emerging field of meta-
computing where the problem of allocating and managing 
computational resources is a critical necessity.  
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