
Allocation Management with QBank

Scott M. Jackson

Pacific Northwest National Laboratory
{Scott.Jackson}@pnl.gov

Abstract

As the high performance computational requirements of
the scientific community grow more complex in an
increasingly distributed environment, there is a rising
need to manage the allocation of these resources across
larger boundaries. Local site management needs a means
to fairly distribute the underlying computing resources
(processors, memory, disk) to the various users or
projects that have access to them. Some sites have
attempted to resolve this deficiency by writing rather
simplistic homegrown scripts that do little more than
track project/account CPU usage in a periodic post-
processing fashion. However, these mechanisms are
becoming increasingly inadequate. Without scalable and
flexible resource allocation and control mechanisms,
wide-scale distributed computing will not be realized. In
this paper, QBank is introduced as an effective tool in
managing resource allocations within high performance
computational environments. QBank’s design and
architectural features are considered. Strategies for
deployment are explored. Scenarios for how QBank might
operate within a meta-computing context are described.
Issues of scalability, security, and future work are
discussed.

1. Introduction

As the high performance scientific computing
resources grow in scale and capability, there is an
increased need to manage the allocation of these
resources for a large number of users. The site
management needs a means to fairly distribute the
underlying computing resources (processors, memory,
disk) to the various users or projects that have access to
them. This introduces a need for a resource allocation
management tool, often referred to as an allocation
manager or an allocation bank. The allocation manager
associates a cost (measured in node-hours or

computational credits) to a computing resource. It
provides full accounting of each resource used and the
costs charged to each job utilizing the resource. It ensures
that users and projects use only the resources allocated to
them. In simple terms, it ensures that people get what they
“pay” for.

Without allocation management, projects and users
would consume computing resources based solely on how
aggressively they submitted their workload rather than
based on any site managed policies and priorities.
Allocation management becomes increasingly necessary
as inter-site sharing of resources becomes prevalent. Even
within a single site with multiple computing systems,
different resources may have different valuations or
require different allotments to users. Besides simply
allocating the total amount of the computing resource a
user or project can use, the site management needs a way
to set timeframes for the expenditure of these allocations.
This capability is also necessary in order to prevent year-
end resource exhaustion when underspent projects
simultaneously claim allocation fulfillment. It provides
the capability of meting out the resources at a fair and
predictable rate. By measuring actual project resource
usage against allocated amounts it allows for insightful
planning of how much more work can be supported by
new projects as old ones expire in regular cycles.

2. Overview

In order to fill the need for allocation management,
PNNL has developed a versatile allocation bank called
QBank [1], which currently runs on its production IBM
SP High Performance Computers as well as the 192-CPU
Linux cluster at PNNL. QBank is also in production use
at the Maui High Performance Computing Center and the
University of Utah and is being installed at a number of
other sites and universities. QBank has proven effective
in providing the ability to manage computational
resources allocated to a project or user at High
Performance Computing facilities.

Much like a bank but with the currency measured in
computational credits instead of dollars, QBank provides
an administrative interface supporting familiar operations
such as deposits, withdrawals, transfers and refunds. It
provides balance and usage feedback to users, managers,
and system administrators. Computational resources are
allocated to projects and users and full accounting is
made of resource utilization. Some of QBank’s existing
capabilities include: reservations, real-time debiting,
expiring allocations, earliest credit expenditure, flexible
charging, multiple accounts per user and multiple users
per account, common credit pool, debit and credit
allocations, overdraft protection, allocation exchange
mechanisms, resource quotes, anonymous users, default
accounts, security authorization, programming interfaces
and database persistence.

3. Design/architecture

QBank Version2 is written almost exclusively in perl5.
This allows great flexibility for data manipulation and
architectural independence. It is easy to read and modify
the source code and requires no compiling. It is also
widely available and freely distributed. QBank consists of
a server daemon (qbankd), and clients (to be discussed
later) and provides persistence and transactions with a
relational database.

3.1. Fundamentals

Just like in a bank, the fundamental container of
computational credits is the account. You may have
multiple users per account and multiple accounts per user
(See Figure 1).

Chem101

Biol 252

Acct 301

•
A
m
y

•
B
o
b

•
D
a
n

•
C
h
r
i
s

•
E
v
e

•
F
r
e
d

•
G
r
e
g

•
H
i
e
d
i

•
I
v
a
n

•
J
o
h
n

•
K
a
t
i
e

•
L
a
r
r
y

Accounts

Users

Figure 1. Multiple users per account and multiple
accounts per user.

Deposits are made into the accounts creating
allocations. Withdrawals are made against the appropriate
accounts according to the value of the resources utilized.
The currency for the bank may be based on processor-
seconds from a reference system, or it may be based on
real money.

Unlike a conventional bank, however, the computa-
tional credits within the account can be apportioned to
various users, machines, and timeframes for expenditure.
Besides being able to specify which users can draw from
which account, with QBank you have full control over
how much each user is allowed to use within each
account, how much they can use toward which machines,
as well as the timeframes over which their allocations
must be used.

3.2. Charging

QBank supports a flexible and customizable
mechanism for charging for resource utilization. By
default, the withdrawal amount is calculated by
multiplying the number of processors used by the number
of wallclock seconds taken by the job. Besides CPU, a
resource supplier may charge based on the amount of
memory, disk, network bandwidth used, or virtually any
other consumable resource. When resources are shared,
such as multiple jobs sharing CPUs on an SMP system,
consumption rate charging can be used to prorate the
charges according to the percentage of actual
consumption of the resource. A job can be charged
different static multipliers depending on quality of service
requested, class, node type, or which machine it ran on.
Since the charge algorithm is externalized, dynamic
charging can be applied such as charging different rates
according to time of day or week, dynamic price
adjustment according to load or queue backlog, a query to
an external information service, or a cached second-price
auction result.

3.3. Interaction with other applications

QBank was designed to interface with other allocation
managers, schedulers, resource managers, meta-
schedulers, information services and other external
services. Other applications can interact with QBank by
linking and using a C-language API (QBank 2.9) or by
calling command line clients. Figure 2a shows an
example of a typical interaction sequence.

Resource
Manager
(PBS, LL)

Scheduler
(Maui)

Allocation
Manager
(QBank)

0

2

1

4

3

5

6

0. Make Deposits, etc.
1. Submit Job
2. Balance Check
3. Make Reservation
4. Start Job
5. Job Completes
6. Remove Reservation & Make Withdrawal

Figure 2a. Local site allocations and job
scheduling flow.

Resource
Manager
(PBS, LL)

Allocation
Manager
(QBank)

0

2

1

5

3

3

7

Meta-
Scheduler
(Silver)

Scheduler
(Maui)

6 8

4

0. Make Deposits, etc.
1. Submit Job
2. Obtain Quote
3. Stage Job
4. Balance Check
5. Make Reservation
6. Start Job
7. Job Completes
8. Remove Reservation & Make Withdrawal

Figure 2b. Remote site allocations and job
scheduling flow.

After initializing the accounts by adding users and
creating allocations, a user may want to access a
computational resource. A job is submitted to a local
resource manager. As part of the job description, an
account may be specified, as well as the number and type
of resources desired and usually an upper limit of how
long the user will use the resource. If the user does not
specify an account, QBank or the scheduler may be
configured to use default or fallback accounts. A submit
filter may be invoked by the resource manager to perform
a sanity balance check for the user and warn the user or
reject the job if insufficient funds are available. This is
used more for an early warning system so the job does not
wait in the queue for a long period of time before it must
be cancelled due to lack of funds. When the scheduler
determines that the job can run, it makes a reservation
(which is a pending withdrawal or hold on the user’s
funds) against the account before starting the job. This
ensures that the user has sufficient funds to complete the
job and prevents oversubscription, since reservations can
only be made with available (non-reserved) funds. When
the job completes, the reservation is removed and the
actual withdrawal is made. Normally the withdrawal will
be less than the amount reserved, since the reservation
amount is based on the wallclock limit and the
withdrawal amount is based on actual wallclock time
used. Reservations which are not removed, automatically
expire after their wallclock limits have been surpassed.
Reports can be sent out periodically to update users and
managers of resource utilization levels and account status.

Figure 2b depicts a possible interaction sequence for a
meta-computing environment where a job could run on
any of a number of computational resources.

A job is submitted to a meta-scheduler with details of
its resource requirements and preferences. The meta-
scheduler determines which systems have resources that
could fulfill the user’s request. Quotations are obtained
from the favored systems to determine what it will cost to
run there and to secure a rate guarantee. The system is
selected that most closely translates to the user’s
preferences concerning price vs. performance charac-
teristics. The appropriate account for the chosen system
can be specified in the job description, or it could be
derived from a global information service (not shown)
providing system-to-account mappings. After the job is
staged to the scheduler governing the use of the selected
resource, the quotation id is passed along when making
the reservation and withdrawal in order to secure the
guaranteed rate. In addition to the computation, data-
staging may have to be scheduled and charged for before
and after the job runs.

QBank could be utilized as an important component of
GRID environments with interactions with exchange
servers, other allocation managers, market price
directories, information services, etc. [2,3,4]

3.4. Database based design

QBank takes advantage of the powerful querying
capabilities of a relational database to store and retrieve
the transaction history and current state of the bank. It
provides concurrency and automatic record locking to
prevent data corruption. It provides better performance
than flat-file solutions and is more fault safe because
rollbacks are performed upon failure. Using a database
allows for easy report queries, simplifies clients and
provides the ability to merge other tables (i.e., node, user,
machine or job information) into the reports. Sites can use
built-in report utilities or create their own that use QBank
subroutines or query the database directly.

3.4.1. Database independence

The bank subroutines use the Perl DBI module which
is a database independent interface that allows any of a
variety of relational databases to be used as the backend
without modifying the source code. Although Postgres is
currently the only database tested so far, other databases
supported by the Perl DBI include: Adabase, DB2,
Empress, Fulcrum, Illustra, Informix, Ingres, mySQL,
ODBC, Oracle, Postgres, and Sybase.

3.5. Server configurations

When setting up QBank, any of a number of system,
scheduler, bank server, and database configurations is
possible (see Figures 3a-3d). You may have separate bank
servers and databases for each system. You may have a
central database seen by multiple bank servers or a central
QBank server for all local schedulers.

3.6. Internal class design

All queries are handled by the QBank server daemon,
qbankd. This server daemon accesses a library of Perl
subroutines which are organized around the database
tables which they manipulate. Although, not strictly
written in object-oriented syntax, QBank follows an
object-oriented design and will become fully class-based
in subsequent releases. Figure 4 depicts the major object

Bank

Sched Sched

Bank

DB DB

Site A

System B System A

Figure 3a. Separate banks and databases.
Scheduler and bank may be on same or different
hosts within a system. Databases may be on
same or different servers.

Bank

Sched Sched

Bank

DB

Site A

System B System A

Figure 3b. Central database. All systems within a
site are managed by a single central database,
though each system has its own QBank server.

Bank

Sched Sched

DB

Site A

System B System A

Figure 3c. Central bank. All systems within a site
are managed by a single central QBank server,
but have separate schedulers.

Bank

Sched

DB

Site A

System B System A

Figure 3d. Central scheduler. All systems within
a site are managed by a single central scheduler
which manages access to all systems.

Bank

Checkpoint

*
ChargeRate

*
User

TxnLog

Quotation

*
Reservation

*
Account

*
Allocation

*
Su

b-
A

cc
ou

nt

*
Sub-Allocation

*
Sub-Reservation

 N

1

N

N N

N

1

1

N

N

N

Figure 4. This figure depicts the major object
classes (tables) manipulated by QBank. The
circles represent primary classes, while the
block arrows represent association classes. An *
indicates checkpointed objects.

classes (tables) manipulated by QBank and their
associations to each other.

3.6.1. Bank

The Bank Class manipulates bank-level properties
such as the current QBank version.

3.6.2. Accounts

An account can be viewed as a logical collection of
computational credits allotted to a particular project or
group of users.

3.6.2.1. Account types

Accounts may be of different types depending on the
exchange relationship with other allocation managers
(QBank 2.10). By default an account is of type local (see
Figure 10a) and transactions affect only local accounts.
Other valid account types exist to support access by users
remote to the resource supplier and involve exchanges
with other allocation managers. The meta account type
(see Figure 10b) manages simple remote usage and
supports a traceback capability (as do all of the non-local
account types) to provide the submitter’s site with
accounting information and policy enforcement. With the
seesaw account (see Figure 10c), each debit causes a
corresponding credit to be issued on the requester’s
resource usable by the resource supplier. The forwarding
account type (see Figure 10d) causes allocation charging
to be forwarded to a remote central account which
manages the allocations for multiple sites. In some cases
an exchange rate must be applied to convert currency
from the local bank to that of the remote bank. More
detail about exchange mechanisms and non-local account
types is given in Section 3.8.

3.6.2.2. Account deactivation

An account may be deactivated by the bank
administrator wherein no scheduler transactions
(reservations, withdrawals) can be made to it. Deposits,
transfers, queries can still be performed on the account.

3.6.2.3. Default machine access list

At the account level a default list of machines that new
allocations can access is defined and will be used when
making deposits in the case that no list of allowed
machines is specified. By default, the default machines
list defaults to ANY meaning that the credits for that
allocation are useable at any resource managed by that
Allocation Manager.

3.6.3. Users

A user is simply a handle or id by which a user is
known outside the bank and is generally their local
system userid. A user may belong to more than one

account (see 3.6.4 Subaccounts). The user class defines
the mapping of a userid to the user’s full name, email
address, phone number, and other information.

3.6.3.1. Default accounts

Each user may be assigned a default account to which
withdrawals and reservations will be made when no
account is specified. By default, the first account to which
a user is added becomes the default account unless
subsequently modified.

3.6.4. Subaccounts

A subaccount maps a user to an account. There may be
multiple users per account and multiple accounts per user
(see Figure 1). A subaccount can be thought of as a
“member” of an account.

3.6.4.1. Subaccount types

A user status is associated with each user and may be
one of enabled, disabled, admin or reserved. A
subaccount may be individually disabled such that no
scheduler transactions (reservations, withdrawals) can be
made to that account in behalf of that user. An account
administrator can perform account-level functions such as
transfers among subaccounts, adding/removing account
members, setting the deposit mask, and running account
reports. Besides the user subaccounts, there are 3 types of
special reserved subaccounts: RESERVE, KITTY, and
ANY.

3.6.4.2. The RESERVE pool

The RESERVE subaccount is a pool which cannot be
withdrawn from. This subaccount can be used by
administrators to hold funds in reserve, or preallocate
them but not activate them. The account administrator can
readily transfer funds to and from the RESERVE and
other subaccounts. Funds may be reserved and
periodically dispensed as a way of ensuring that funds
endure throughout a project cycle. The LATEST expiring
allocation credits can be transferred to the RESERVE
subaccount so that these tied-up funds are not the ones
lost when early allocations expire.

3.6.4.3. The KITTY pool

The KITTY subaccount is a common pool from which
any active subaccount may draw after having depleted
their personally allotted credits. If all credits are placed in

this pool, then all valid users have equal access to the full
allocation. Withdrawals will only be taken from the
KITTY after the user’s own subaccount funds are
depleted.

3.6.4.4. The ANY pool

The ANY subaccount (QBank 2.10) can allow access
by non-local users. Any credits placed in the special ANY
pool are useable by any requestor regardless of whether
they are members of the account. If a user is not specified
for a quotation, withdrawal or reservation, the requesting
user will be mapped to UNKNOWN and QBank will
verify that enough credits exist in the ANY subaccount to
fulfill the request. QBank will debit maximally from the
user, KITTY, then ANY where possible in order to satisfy
a reservation or withdrawal request – in that order.

3.6.4.5. Deposit mask

Associated with a subaccount is a deposit mask
component which is used at the time of deposit to specify
the distribution of funds among the subaccounts (member
users) when not otherwise specified by the deposit.
Deposit mask amounts are expressed as a percentage and
must total 100 for the account. For example, for a deposit
mask of {alice=>20, bruce=>30, KITTY=>50}, a deposit
of 1000 nodeseconds would allocate 200 nodeseconds to
alice, 300 to bruce and 500 to the KITTY pool.

3.6.4.6. Hierarchical accounts

A future release (tentatively QBank 2.11) will likely
support account hierarchies where accounts may have
parent-child relationships which other accounts. In such a
configuration, the deposit mask will be used to trickle-
down deposits from higher levels to lower levels.
Withdrawals and reservations will trickle-up through the
parent’s user, KITTY and ANY subaccounts.

3.6.5. Allocations

An allocation is created (instantiated) when a deposit
is made. An allocation is a collection of computational
credits with common properties such as the type of
allocation, the list of machines which can access them and
their validity period. An account may have multiple
allocations. Each allocation is further broken down into
suballocations to the various subaccounts (see 3.5.6
Suballocations). Allocations are uniquely specified by an
allocation key.

3.6.5.1. Allocation validity periods (activation and
expiration)

All credits are given an activation date and expiration

date to define the period in which they may be consumed.
By default an allocation is valid from – infinity to
infinity. This feature can be used to assist users to meet a
target usage distribution and prevent year-end resource
exhaustion. Figures 5a-5c demonstrate a variety of
possible allocation strategies.

Lumped Allocations

Jan-99 Feb-99 Mar-99 Apr-99 May-99 Jun-99 Jul-99

Alloc1
60,000 NH

Figure 5a. All disbursements are made into a
single monolithic allocation. This could be
boundless with no expiration if the sole purpose
of the allocation was to track usage and
accounting information. Or activation and
expiration dates can be imposed while allowing
for maximum flexibility of credit expenditure.

Stepped Allocations

Jan-99 Feb-99 Mar-99 Apr-99 May-99 Jun-99 Jul-99

Alloc6

Alloc5

Alloc4

Alloc3

Alloc2

Alloc1 10,000 NH

10,000 NH

10,000 NH

10,000 NH

10,000 NH

10,000 NH

Figure 5b. In this example, all of the credits are
made available for use at the beginning of the
usage period. Portions of the credits are expired
at regular intervals. This “use it or lose it”
strategy can help prevent project-end resource
exhaustion when all accounts which had
underspent their credits simultaneously demand
allocation fulfillment (by then impossible to
deliver).

Overlapping Staggered

Jan-99 Feb-99 Mar-99 Apr-99 May-99 Jun-99 Jul-99

Alloc7

Alloc6

Alloc5

Alloc4

Alloc3

Alloc2

Alloc1 5,000 NH

10,000 NH

10,000 NH

10,000 NH

10,000 NH

10,000 NH

5,000 NH

Figure 5c. Staggered allocations can be used to
ensure projects user their funds in an even
proscribed rate. It is important that the
allocations overlap somewhat to prevent
problems at the points when the earlier
allocations expire.

3.6.5.2. Machine access lists

Different users within an account may be given
different machine access privileges by creating multiple
allocations (See Figure 6). An allocation can allow access
to a list of machines or may specify the keyword ANY
which allows access from any machine managed by the
Allocation Bank.

Cluster
Experimental

BigIron & Test

0

20

40

60

80

100

120

140

160

180

200

Machines vs Users for chem101 (1Q01)

Figure 6. Multiple allocations can be created to
distribute funds among the users variously for
different sets of machines.

George

Eve

David

KITTY

Fred

Chris

Bob

Amy

3.6.5.3. Payment mechanisms

An allocation may be of type debit or credit (QBank
2.10) (see Figures 7a-7c).

3.6.5.4. Debit allocations

By default, allocations are debit-based where credits
are deposited in advance and used until they are gone (see
Figure 7a). This might be grants based or on a pay first,
use later basis.

Zero-balance line

Current (positive) Balance

Figure 7a. Debit based allocation.

3.6.5.5. Credit allocations

A credit allocation may be used to establish an
overdraft buffer or used as a credit account on a use first,
pay later basis. Credit-based allocations have a credit
limit, supporting a negative balance up to some limit,
where subsequent deposits may be made to balance the
account (see Figure 7b).

Current (negative) Balance

Credit Limit

Zero-balance line

Figure 7b. Credit based allocation.

3.6.5.6. Overdraft protection

Overdraft protection (where an account generally
maintains a positive balance but is allowed to go negative
to a predefined extent) can be implemented through a
combination of debit and credit allocations (see
Figure 7c). As a rule, debit allocations are always the
debited before credit allocations, and deposits always fill
up credit allocations first unless otherwise specified.

 Current (positive) Balance

Overdraft Limit

Zero-balance line

Figure 7c. Overdraft protected allocation.

3.6.6. Suballocations

A suballocation represents the portion of an allocation
allotted to an individual subaccount (user). Ultimately, it
is within the suballocation that all balance amounts are
actually stored. Account and allocation balances are just
aggregations of suballocation amounts. The collection of
funds within each suballocations inherits a set of
properties such as the type and the account, user,
machines, and time period for which it is valid. It is the
suballocation that stores and controls the overdraft
amount (credit limit).

3.6.6.1. Suballocation strategies

Several strategies are possible for dividing the
computational credits among the users within an account.
One could attempt to distribute all of the funds
individually to the users so all had access to a fair share
of the credits (see Figure 8a). A potential drawback is that
if a user does not use much of his/her funds, they will
either go wasted or require an administrator to transfer
them to other users. All members can be given equal
access to all of the funds by putting them in the common
KITTY pool (see Figure 8b). This way one will not likely
have credits go unused. However, you stand the chance
that some users will unfairly deplete the allocation,
leaving nothing for the others. One could equally divide
most of the funds, while placing the remainder in the
KITTY (see Figure 8c). This will ensure that all users get
at least a certain portion, while allowing high burn-rate
users to use the overflow. This concept could be extended
to place half or a majority of the funds in the common
KITTY, but parcel out a small portion to each user in
order to prevent starvation (see Figure 8d). The account
administrator (project lead) may choose to withhold a
portion of the original allocation in the RESERVE pool to
distribute later as deemed necessary (see Figure 8e). For
the case where resource users do not have local userids or
it is not important to restrict who has access to the
allocation, all credits may be placed in the special ANY
subaccount (See Figure 8f).

Split Equally Among Users

Amy
34%

Bob
33%

Charlie
33%

Amy
Bob
Charlie
KITTY
RESERVE
ANY

Figure 8a. All users given equal.

All Members have Equal Access

KITTY
100%

Amy
Bob
Charlie
KITTY
RESERVE
ANY

Figure 8b. All in common KITTY.

KITTY Used as an Overflow Buffer

Amy
30%

Bob
30%

Charlie
30%

KITTY
10%

Amy
Bob
Charlie
KITTY
RESERVE
ANY

Figure 8c. Minority to KITTY.

Guaranteed User Minimums

Amy
15%

Bob
15%

Charlie
15%

KITTY
55%

Amy
Bob
Charlie
KITTY
RESERVE
ANY

Figure 8d. Majority to KITTY.

Reserve Credits for Admin
Transfers

Amy
25%

Bob
25%

Charlie
25%

RESERVE
25%

Amy
Bob
Charlie
KITTY
RESERVE
ANY

Figure 8e. Holdings in RESERVE.

Nonmember Users have Equal
Access

ANY
100%

Amy
Bob
Charlie
KITTY
RESERVE
ANY

Figure 8f. All funds placed in ANY.

3.6.7. Reservations

Before a job runs, the bank will attempt to place a
reservation or hold (make a pending withdrawal) on the
account in behalf of the requesting user. Subsequent jobs
will also place reservations while the available balance
(balance-reservations) allows. When a job completes, the
reservation is removed and the actual withdrawal is made
to the account. This procedure ensures that jobs will only
run as long as they have sufficient reserves. If the user
does not have sufficient funds, the job will be deferred
until additional funds are deposited into the user’s
account.

3.6.8. SubReservations

A reservation may have multiple subaccount
components (subreservation) such as the user component,
a KITTY component and an ANY component. This is
necessary because withdrawals and reservations may
partly be satisfied by the user’s funds and partly by other
funds from other sources such as the KITTY or ANY
pool.

3.6.9. Quotations

The ability to obtain a quote supports a meta-scheduling
environment where it may be useful to determine how
much it will “cost” to run a particular job with the specified
requirements. A quote request can guarantee a charge rate
based on the projected wallclock time and other
parameters. A quote returns the projected cost as well as a
quotation identifier which can be specified with the
subsequent reservation and withdrawal to secure the
guaranteed charge rate, prorated according to actual
wallclock time used. The quote will expire after
WallClockTime+GraceTime seconds and a job will have
to complete before that time in order for QBank to honor
the quote.

3.6.10. ChargeRates

When a withdrawal, reservation or quotation request is
received, a call is made to the external charge() routine.
All parameters of the request (Processors, WallClock
Time, User, Account, etc.) are made available to the
charge algorithm. Any arbitrary formula may be used to
calculate the appropriate charge. Besides static rates
which can be specified directly within the external charge
routine, QBank provides a table for storing configurable
charge rates, accessible by subroutines internally and
through the QBank API. These charge rates may be
simple consumable resource multipliers such as defining
costs/unit for DISK, MEMORY, PROC, or NETWORK
used. The names are arbitrary and can be customized for
the site. The QBank ChargeRate class also supported
multi-valued charge factors such as CLASS (which may
have values like interactive, batch, or development), QOS
(Quality of Service), TIME (i.e., primetime vs. non-
primetime), NODETYPE, and MACHINE. Dynamic
charging rates can be derived directly within the charge
routine or it can query one of the ChargeRate factors
which could be dynamically updated by an external
process. For example, a BACKLOG multiplier could be
stored in the ChargeRate table as a simple valued
multiplier (which is periodically updated by a cronjob) or
the BACKLOG multiplier can be derived dynamically by
a query to the scheduler from within the charge routine.

3.6.11. CheckPoints

Checkpoints can be created in order to preserve the
state of QBank for that time. You may have as many
checkpoints as you have diskspace for. These checkpoints
may be used to restore QBank to a previous state or to
query previous state information, such as in previous

balance calculations. It is highly recommended that
checkpoints be created before making risky modifications
to the bank data that you may want to undo. It is also
recommended that regular checkpoints be made so that
past bank statement balances can be derived while parsing
a minimum of transactions. The transaction records are
not checkpointed.

3.6.12. Transaction logs and reporting

Records of all scheduling related and balance
modifying transactions are stored in the database for
accounting and reporting purposes. Flexible querying
mechanisms can extract all past transactions matching
various constraints. A bank statement client is provided
(qbs) which reports beginning and ending account
balances for any arbitrary time period, as well as sum-
maries of all debits and credits issued within that period.
Other clients are provided to report balances, and the cur-
rent status of allocations, users, accounts, reservations, etc.

3.7. Earliest credit expenditure

An account containing credits with varying expiration
dates will automatically satisfy all debit requests using the
credits with the earliest expiration date. To do so requires
that appropriate transfers be made amongst the various
subaccounts in order to maintain fairness. The following
section (see Figures 9a-9d) considers some design aspects in
order to elucidate the concept of earliest credit expenditure.

For the example, in Figure 9a, we see three allocations
of 100, 100 and 200 credits with expiration dates at the
end of January, February, and March of 2003
respectively. Within each allocation, we have
suballocations to various users (subaccounts), such as
scott, dhazen, valley and KITTY (the common pool). A
particular subaccount’s balance is calculated by adding up
all of the subaccount’s suballocations, and it can be seen
that the scott subaccount has a total of 150 credits, with
40 credits expiring at the end of January, 20 in February,
and the rest (90) in March.

If scott was to run a job which required a withdrawal
of 180 credits, it would seem at first glance appropriate to
simply zero out all of scott’s 150 credits and then subtract
an the end of January when the remaining 50 credits in
Allocation 1 would simply vanish because they had not
been used by their expiration date. But well over 100
credits had been expended. It would be far more desirable
if somehow allocations are always used from the earliest
expiring allocation so that when an allocation expires,
you lose as few credits as possible. But we can’t take
credits away from the other subaccounts!

Figure 9a. Wasteful expirations occur without earliest credit expenditure.

Now, it would admittedly seem to be far simpler if we

neglected the concept of suballocations altogether (in
effect ignoring the center matrix) and simply maintain
the appropriate totals separately by subaccount and by
allocation (see Figure 9b). For the above debit of 180, all
we would have to do is debit scott’s balance by 150,
KITTY’s balance by 30, and in parallel we would debit
allocation 1 by 100 credits and allocation 2 by 80. As
long as we can make sure the allocation subtotals and the
subaccount balances add up to the same total, we would
be all right, wouldn’t we? Well, unfortunately we will
have lost the ability to maintain fairness when allocations
are expired. Consider what happens at the end of
February when Allocation 2 expires. It is easy enough to
zero out the 20 credits in allocation 2, but how much do
we debit from which subaccounts to keep them in
balance with the allocations? We could spread the debit
evenly (taking away roughly 20/3 from each of the
remaining plenished subaccounts). But doing this would
not be fair to the subaccounts which did use up their
share of the expiring credits.

Imagine that scott had debited 50 instead of 180.
Allocation 1 would have 50 credits remaining and scott’s
balance would be 100. When allocation 1 expired we
have to take away the remaining 50 credits from the
subaccounts and it does not seem reasonable to take
away an additional (50/4=12.5) credits from scott, since
he has already withdrawn more than his

share of the expiring credits. If you have to pick
subaccounts to lose the credits, it should be those who
did not use them, since the whole intent of expirations is
to enforce a “use it or lose it” policy. Scott used his. He
should not be further penalized. Without the central
matrix of suballocation information, you have no way to
know how much should be removed from the
subaccounts when allocations expire.

QBank ensures that the credits will always be taken
from the earliest expiring allocation, while
simultaneously maintaining fairness at the time of
expiration. To do this, when a debit is performed, QBank
makes a series of inter-allocation/intra-subaccount
transfers where sooner expiring credits for the debiting
user are substituted for later expiring credits for the other
subaccounts in a round-robin fashion. In this way, the
debiting user happily converts enough of his credits into
the earliest expiring type (since he is just about to spend
them anyways) whereas the other users are more than
happy to have some of their credits changed to expire
later. All subaccount balances and allocation subtotals
remain the same throughout the process. Figure 9c
demonstrates the mechanics of a pathological example.
For those who do not have the tenacity to follow this
elaborate example, please skip to the next section. Again
in this example, scott needs to make a withdrawal for
180 credits (30 of which must come from the KITTY).

Allocations Expires scott dhazen valley KITTY Total

1 Jan 31 2003 40 30 20 10 100
2 Feb 28 2003 20 20 30 30 100
3 Mar31 2003 90 40 10 60 200

Balance 150 90 60 100 400

Allocations Expires scott dhazen valley KITTY Total

1 Jan 31 2003 0 30 20 0 50
2 Feb 28 2003 0 20 30 10 60
3 Mar31 2003 0 40 10 60 110

Balance 0 90 60 70 220

(-40)
(-20)
(-90)

(-20)
(-10)

Allocations Expires scott dhazen valley KITTY Total

1 Jan 31 2003 100

2 Feb 28 2003 100

3 Mar31 2003

200

Balance 150 90 60 100 400

Figure 9b. Fairness at expiration is compromised if the suballocations are not tracked.

Refer to Table 1 of Figure 9c. In the first round of

transfers between allocations 1 and 2, scott’s
suballocation in the second allocation is of 20 credits.
There are three subaccounts with non-zero suballocations
in the first allocation, so the largest integer transfer we
can evenly perform to all other subaccounts is
int(20/3)=6. Accordingly, 6 credits are transferred from
allocation1 to allocation2 for each of dhazen, valley and
KITTY, while 18 credits are transferred from allocation2
to allocation1 for scott. The last 2 credits in scott’s second
allocation are left there since they cannot be evenly
distributed among the subaccounts. They will be used
later. It can be noted by the results depicted in table 2 that
all of the allocation totals and subaccount balances have
remained the same throughout the procedure.

Refer to Table 2 of Figure 9c. Next we consider the
credits that can be transferred between allocations 1 and
3. Scott has 90 credits to transfer which would is equally
divisible by 3 (30), but not all suballocations in
allocation1 have 30 credits to exchange so a round robin
technique must be use to continuously make even
transfers among the non-zero suballocations. KITTY has
the least amount of credits with 4, so we “spin” 4 credits
down for each of dhazen, valley and KITTY, while we
spin 12 credits up for scott.

Refer to Table 3 of Figure 9c. Continuing this process
while non-zero suballocations exist in allocation1 for the
other subaccounts, the minimum non-zero suballocation
is 10 (valley) so 10 credits are spun down for valley and
dhazen and 20 credits spun up for scott.

Refer to Table 4 of Figure 9c. The remaining 10
credits in allocation1 (dhazen) are substituted for credits
in allocation3.

Refer to Table 1 of Figure 9d. Now that all
suballocations are exhausted in the earliest expiring
allocation (allocation1), we move to the next earliest
expiring allocation (allocation2). We must spin 48 of
scott’s credits from allocation3 to allocation2. To issue
the transfers evenly among the three other subaccounts,
48/3=16 credits are spun down for each of dhazen, valley
and KITTY while 48 credits are spun up for scott.

Refer to Table 2 of Figure 9d. For the 150 credits that
must be debited from scott, it can now all be taken out of
the earliest expiring allocations. With scott’s funds
depleted we must make up the remaining 30 credits from
the KITTY subaccount. Again, we want to make sure that
all credits used are those which are the earliest to expire.
Hence, KITTY needs to trade 10 later expiring credits for
earlier expiring ones. Scott’s funds are depleted, so we
spin 5 credits down for each of dhzaen and valley, and
spin 10 credits up for KITTY.

Refer to Table 3 of Figure 9d: At this point we can
take the 30 credits we need from KITTY.

Allocations Expires scott dhazen valley KITTY Total

1 Jan 31 2003 0

2 Feb 28 2003 20

3 Mar31 2003

200

Balance 0 90 60 70 220

(-150)

(-80)

(-100)

(-30)

 Allocations Expires scott dhazen valley KITTY Total
1 Jan 31 2003 40 30 20 10 100
2 Feb 28 2003 20 20 30 30 100
3 Mar 31 2003 90 40 10 60 200
Balance 150 90 60 100 400

Allocations Expires scott dhazen valley KITTY Total
1 Jan 31 2003 58 24 14 4 100
2 Feb 28 2003 2 26 36 36 100
3 Mar 31 2003 90 40 10 60 200
Balance 150 90 60 100 400

Allocations Expires scott dhazen valley KITTY Total
1 Jan 31 2003 70 20 10 0 100
2 Feb 28 2003 2 26 36 36 100
3 Mar 31 2003 78 44 14 64 200
Balance 150 90 60 100 400

Allocations Expires scott dhazen valley KITTY Total
1 Jan 31 2003 90 10 0 0 100
2 Feb 28 2003 2 26 36 36 100
3 Mar 31 2003 58 54 24 64 200
Balance 150 90 60 100 400

18 6 6 6

12 4 44

10

20 10

10

10

Figure 9c. Example of spinning suballocation amounts for earliest credit expenditure.

Allocations Expires scott dhazen valley KITTY Total

1 Jan 31 2003 100 0 0 0 100
2 Feb 28 2003 2 26 36 36 100
3 Mar 31 2003 48 64 24 64 200

Balance 150 90 60 100 400

Allocations Expires scott dhazen valley KITTY Total

1 Jan 31 2003 100 (-100) 0 0 0 100
2 Feb 28 2003 50 (-50) 10 20 20 100
3 Mar 31 2003 0 80 40 80 200

Balance 150 90 60 100 400

Allocations Expires scott dhazen valley KITTY Total

1 Jan 31 2003 0 0 0 0 0
2 Feb 28 2003 0 5 15 30 (-30) 50
3 Mar 31 2003 0 85 45 70 200

Balance 0 90 60 100 250

Allocation Expires scott dhazen valley KITTY Total

1 Jan 31 2003 0 0 0 0 0
2 Feb 28 2003 0 5 15 0 20
3 Mar 31 2003 0 85 45 70 200
Balance 0 90 60 70 220

48 16 16 16

5 5 10

Figure 9d. Example of spinning suballocation amounts for earliest credit expenditure continue.

Refer to Table 4 of Figure 9d. Thus, we have
accomplished our goals in strictly taking all funds from
the earliest expiring allocations, since when allocation1
expires, nothing will be lost, with all of the rest coming
from allocation2. All totals and balances have remained
unmodified except for the effects of the debits. And
fairness will be preserved, since when allocation2 expires,
neither scott or KITTY will lose anything (they used
theirs), and valley will lose 10 more credits than dhazen,
which is the same differential loss they would have
experienced were it not for the “quantum spin” process.

3.8. Exchange with other allocation banks

In order for an allocation system to function in a job
scheduling environment consisting of multiple
administrative domains, its design has to adequately
address performance, scalability, security, and trust
issues. It should be decentralized, allowing both the
requesting site and the providing site appropriate controls
and full accounting. All parties should be able to act in
their own best interest without having to place blind trust
in the other party. QBank 2.10 introduces support for
several allocation exchange models in which allocation
managers must interact with each other for the transfer of
computational credits and/or accounting information. This
capability is in a prototype stage and much work remains
to properly resolve many of the issues described earlier.

Some of the facilities to support such an environment
have been discussed under previous sections. The
quotation mechanism (see Section 3.6.9) allows a meta-
scheduler (or GRID Resource Broker[2]) to ask the
allocation manager how much it is going to cost to run the
job on a particular resource. The quote_id returned by the
query can be used to guarantee the quoted rate. Support
exists to allow users from a remote site to run jobs
without having to have local accounts. One could make
funds available in the special ANY subaccount (see Sec-
tion 3.6.4.4) or use preallocated pseudo-user subaccounts.
Accounts may make funds available with a debit or credit
based payment mechanism (see Section 3.6.5.3). Default
accounts (see Section 3.6.3.1) allow users to run jobs
without having to know which account to specify. A
traceback mechanism is supported for all non-local
account types (meta, seesaw or forwarding) (see
Sections 3.8.2-3.8.4). This capability provides the
requesting site the ability to both track the resources used
by the job on the providing site and to control which local
users can use how much of the available resources on the
remote site.

In this section we shall describe some of the possible
account configurations that could be considered to handle
requests by remote users.

3.8.1. Local account

We should first consider the use of the default local
account type (see Figure 10a). This account could just as
well serve remote users as local users. The site may
require that all remote users go through the process of
obtaining a local userid and be added to the account, they
might set up a special userid for external users, or the
account could be configured to supply resources to any
user by placing credits in the special ANY subaccount.
This configuration assumes that the requesting site
explicitly trusts the providing site to manage the
accounting and access control.

localSITE1
Local
Account

SITE1

Figure 10a. Local account. On-site users
accessing local resources generally use local
debit accounts.

3.8.2. Meta account

Perhaps a more general configuration for a meta
account is expressed in Figure 10b. Let’s examine a
hypothetical situation in detail. Suppose kenneth from
SITE2 wants to submit a job to a meta-scheduler and he
does not know where it is going to land. His locally
accessible meta-scheduler figures out which systems (to
which he has access) have the resources to satisfy the job
requirements and by querying schedulers and requesting
quotes, determines that the best (perhaps soonest and
cheapest) place for him to run would be on a particular
system (CLUSTER1) at SITE1. It could determine by a
query to an information service (or within the job
command file) that, for this system, kenneth has access to
the account metaSITE2 as user SITE2user. The
metaSITE2 account has been previously setup at SITE1
as a meta account consisting of a debit allocation for
running remote jobs from SITE2. The allocation is good
for a year and specifies that its credits are useable on
SITE1’s production IBM system and the Linux cluster.

metaSITE2 runSITE1
Meta
Account

SITE1 SITE2

Traceback
debit

Figure 10b. Meta account. Users from other sites
could access a meta-account using a generic
userid (SITE2user) with a traceback debit
providing the submitter’s site with accounting
information and policy enforcement.

If the submitting site (SITE2) desires accounting
feedback and control over who uses its externally
available resources, then the meta-scheduler should be
configured to pass along traceback information with the
job requests. For this example, we will assume that it does
and SITE2 supplies the hostname and port for its local
allocation manager and the user (kenneth) and account
(runSITE1) that should be referenced in the traceback
information when staging the job to the scheduler at
SITE1. Before a job can start, the scheduler at SITE1
attempts to make a reservation (or pending withdrawal)
for the job. Since traceback information was provided and
metaSITE2 is a non-local account type, the allocation
manager at SITE1 will first try to make a reservation for
the job against user kenneth and account runSITE1 at
SITE2. The runSITE1 account might have been setup at
SITE2 as a local account with a single credit-based
allocation with an enormous credit limit. It is used mainly
to track remote utilization and limit which users are
allowed to access the remote account. Fortunately,
kenneth is a valid member of the account runSITE1, the
destination of the job CLUSTER1@SITE1 matches the
machine access lists, and he has not run up against his
external usage limit so the reservation succeeds. Since the
traceback reservation was successful, a reservation is now
made against metaSITE2. If the traceback reservation had
failed, presumably the requesting site did not want that
user to use their externally available cycles, and the job is
not allowed to start. Both a local and traceback
reservation transaction are recorded on the SITE1 side
and a reservation transaction including details about the
providing account has been recorded on the SITE2 side.
The job is allowed to run.

When the job completes, the account on the providing
system (SITE1) is debited, followed by an attempt to

make a debit to the traceback account at SITE2.
Associated reservations are removed. If SITE2 is unable
to process the traceback withdrawal, the withdrawal still
should succeed for SITE1 since it did indeed have its
resource used. The success of the earlier traceback
reservation stands as sufficient proof that SITE2 wanted
the job to run, and we know it has successfully recorded
the earlier pending withdrawal. If all is successful, both a
local and a traceback withdrawal are recorded on the
SITE1 side and a withdrawal transaction including details
about the providing account will have been recorded on
the SITE2 side.

3.8.3. Seesaw account

One possible exchange arrangement that could be
imagined is one in which debits to one account are
mirrored as credits to the other and vice versa. This could
be thought of as an automated bartering arrangement
between two sites. Let’s consider the seesaw account type
depicted in Figure 10c. In this example, cycles used at
SITE1 by SITE2 cause credits to be acquired at SITE2
useable by SITE1. The reverse arrangement can be
similarly established. An exchange rate can be applied to
convert currency from one allocation domain to another.
Once again, a traceback account can be specified with the
transaction.

metaSITE2 metaSITE1

runSITE1

Seesaw
Account

SITE1 SITE2

Traceback
debit

Seesaw
credit

Figure 10c. Seesaw account. In a seesaw
arrangement, cycles used at SITE1 by SITE2
cause credits to be acquired useable at SITE2 by
SITE1. A traceback account can be specified
with the transaction.

Let’s again assume kenneth from SITE2 submits a
“meta job” and it winds up landing at SITE1 to run as
SITE2user under the account metaSITE2. In this
example, metaSITE2 and metaSITE1 are both of account
type “seesaw” and both have been primed with some
initial amount of cycles useable on the opposite site. At
the start of the job a traceback reservation is made at the
requesting site (SITE2) followed by the reservation at the
providing site (SITE1), in just the same way as in the
example for the “meta” account type. Remember that the
traceback transaction is optional and will not be attempted

if traceback information is not sent by the scheduler to the
allocation manager at SITE1 as part of the reservation and
withdrawal requests.

When the job completes, a withdrawal is issued to the
allocation manager for the resource. QBank first debits
the traceback account (if passed), primarily in order to
provide the requesting site with utilization and charging
information. Clearance to run the job had been obtained
at the previous traceback reservation step. Next QBank
makes a credit to the exchange account (metaSITE1),
proportional to the size of the pending debit to
metaSITE2 at SITE1, taking into account any exchange
rate between the site currencies. Finally, the debit to
metaSITE2 is made. If the deposit (credit) into
metaSITE1 fails, then the metaSITE2 seesaw account is
charged double to make up for the lack of compensation
on the other end of the seesaw. Reservation removal and
accounting occurs automatically as part of the withdrawal
process. As a result of kenneth’s usage at SITE1,
someone at SITE1 should now be able to run a
comparable job on a resource at SITE2.

3.8.4. Forwarding account

Another mechanism that might be employed is one in
which allocation charging is forwarded to a central
account which manages the allocations for multiple sites.
For this example, kenneth again submits a job to an
enterprise wide meta-scheduler (one that manages all
ORG resources for example and his job is staged to run
on a resource at SITE1. He knows he wants to run on a
ORG resource and since an account by the name of
metaORG exists on all ORG resources, he can safely
specify an accountname of metaORG for his job. As
before, at the reservation stage, a traceback reservation is
made to runORG so SITE2 has a local record of the
transaction and to essentially establish permission to run
the job in SITE2’s behalf. Upon success, a reservation is
made against metaORG at SITE1 and the job is started.
After the job completes, it is time to charge for the
resources it expended. A traceback withdrawal is
preferred to the runORG account at SITE2 to keep its
books in sync and account for its external utilization.
Since the ultimate source of credits across the ORG
complex is managed by the master allocation manager
running at ORG headquarters (or mirrors thereof), the
main purpose of the metaORG account at SITE1 is to
simply forward all debits to the masterORG account.
Other important side-effects of the forwarding account
are that it provides local site accounting for the resources
used at SITE1 and at the same time SITE1 retains full
local control of the quality and quantity of the use of its

resources and by whom they may be used. The
forwarding account (metaORG) might well be a credit
based account which enforces a credit limit so remote
users don’t overutilize their system. It would determine
what machines at SITE1 are to be made available to the
ORG compute pool. The masterORG account could be a
debit-based account of type local and simply handles
forwarded withdrawals and maintains allocations
disbursed to various users (SITE2user, SITE1user, etc.).
After QBank forwards the debit to ORG, it then debits its
own account. It has already had an opportunity to enforce
all of its screening and policy restrictions during the
reservation step before the job ran.

metaORG runORG

masterORG

SITE1 SITE2

ORG

Traceback
debit

Forwarded
debit

Figure 10d. Forwarding account. Allocation
charging is forwarded to a central account
(masterORG) which manages the allocations for
multiple sites. The forwarding account
(metaORG) might well be a credit based account
which enforces a credit limit and gives the
resource supplier local policy control and
accounting. The submitter’s site can again
request a traceback debit so they can track and
restrict their offsite allocation usage.

3.9. Clients and interfaces

There are two levels of access to interacting with
QBank – high level command-line client access and low-
level subroutine access.

3.9.1. High level command interface

The high level commands are simple Perl wrappers for
the lower level access. These provide unix-style
commands that allow you to create, query, modify, delete
and manipulate QBank objects and accept flag arguments.
Examples include:

qbalance - shows QBank account balance
qbalance [-a account] [-u user] [<-M> machine] [-h]

qwithdraw - make a withdrawal
qwithdraw [-a account] [-C class] [-d disk] [-j jobid]
[-M machine] [-m memory] [-N nodetype] [-n numnodes]
[-p procs] [-Q qos] [-r ``reason’’] [-u user] [-w wall-
clock-time] [-z amount]

qdeposit - make a deposit to the QBank
qdeposit [-k allockey] [-s startdate] [-x expirationdate]]
[-M allowmachines] [-r “reason”] [-u user] [-a] account
[-z] amount

qrefund - make a refund to an account
qrefund [-a account] [-u user] [-z refundamount]
[-M machine] [-f] [-r ``reason’’] [[-j] jobid]

qtransfer - transfers credits between subaccounts
qtransfer [-el] [-M machines] [-a] account
[-z] transferamount [-f] fromuser [-t] touser

qmkacct - create an account
qmkacct [-AI] [-M defaultmachines] [-a] account

qlsacct - lists accounts and their properties.
qlsacct [-a account] [-qvAI]

qchacct - change account properties
qchacct [-A] [-I] [-m “user1=percent”]
[-M mach1:mach2:...|ANY] [-a] account

qrmacct - delete accounts
qrmacct [-a] account

qlsuser - lists user information
qlsuser [-dDEnPqv] [[-u] user]

qchuser - change user attributes
qchuser [-d default_account] [-E “emailaddress”]
[-n “realname”] [-P “phonenumber”] [-D “description”]
[-u] user

qmkuser - define a user to the QBank system
qmkuser [-d default] [-E ``emailaddress’’] [-n
``realname’’] [-P ``phonenumber’’] [-D ``description’’]
[-u] user

qrmuser - remove a user.
qrmuser [-a account] [-u] user

qmkmember - add a user to an account
qmkmember -a account [-S status] [-u] user qlsmember

qlsmember - lists subaccount information
qlsmember [-a account] [-qv] [[-u] user]

qchmember - change subaccount status
qchmember -a account -S status [-u] user

qrmmember - remove a user from an account.
qrmmember -a account [-u] user

qlsalloc - list allocations
qlsalloc [-a account] [-M machines] [-AIh] [[-k] allockey]

qchalloc - change allocations
qchalloc [-s startdate] [-x expirationdate]
[-M mach1:mach2:...|ANY] [-k] allockey
qrmalloc - remove allocations
qrmalloc [-I] [[-k] allockey]

qmkres - make a reservation
qmkres [-a account] -u user -p procs -w wall-clock-time
[-C class] [-d disk] [-M machine] [-m memory]
[-N nodetype] [-n numnodes] [-Q qos] [-r ``reason’’]
[-x expirationtime] [-j] jobid

qlsres - list reservations
qlsres [-NX] [-a account] [-M machine] [[-j] jobid]

qrmres [-X] [-j] jobid]
qrmres - remove reservation

qmkquote - make a charge quote
qmkquote [-C class] [-d disk] [-M machine] [-m memory]
[-N nodetype] [-n numnodes] [-Q qos] [-r ``reason’’]
[-a account] -u user -p procs -w wall-clock-time

qcheckpoint - manipulate checkpoints
qcheckpoint [-d checkpointkey] [-l] [-r “reason”]

qrestore
qrestore - restores a checkpoint

3.9.2. Low level subroutine interfaces

Direct access to the internal subroutines allow passing
of key-value pairs as parameters and allow more
sophisticated use of the allocation manager. These may be
accessed via a command line interface allowing these
calls to be scripted:

qbank - command line QBank subroutine interface
qbank Command_String

Or via a prompt-like interactive interface:

qprompt - interactive QBank subroutine interface
qprompt

3.10. Transaction logging and accounting

All transactions affecting the allocations (deposits,
withdrawals, transfers, etc.) are recorded in the database
in a transaction log. This information includes basic usage
information for jobs and reservations such as number of
processors used/requested, wallclock time, class,
machine, etc. Additionally, all QBank requests and
responses are recorded in rotating flat files.

A command (qtxns) or a low-level subroutine
(get_txns via qbank) allows the querying of all usage and
transactions made to the allocation manager. This
interface can be used to generate usage and allocation
statistics which can be imported into other-party chart and
graph programs.

qtxns - transaction information
qtxns [-a account] [-e enddate] [-k key|jobid]
[-M machine] [-s startdate] [-t txntype] [-u user]

3.11. Reports and usage queries

A sample bank statement program is provided which
generates a report for a given account over an arbitrary
period in the past. This report indicates the beginning and
ending balances for the period, the total debits and credits
for the period, and then provides credit and debit detail
including usage broken down by user.

qbs – QBank bank statement
qbs -a <ACCOUNT> [-e <ENDDATE>]
[-s <STARTDATE>]

Other organization-specific reports can be easily built
to synthesize the information generated by qtnxs (or
qbank get_txns) and the other bank query commands
(qlsacct, qlsalloc, etc.)

3.12. Security, authentication and

communication protocols

QBank communicates over TCP sockets using an
octet-counting scheme for framing, key=value pairs as the

data representation, and by appending a checksum
generated by a shared secret for security.

3.12.1. Checksum security

Clients calculate a checksum on the command request
to securely pass invokers credentials to the bank server.
The checksum is dynamically generated for the client
request by a setuid-root program based on the contents of
the request and who invoked it.

3.12.2. Administration levels

QBank supports three levels of authorization – user,
account, and bank.

3.12.2.1. Bank level administration

Bank admins are authorized to perform all
administrative functions such as creating accounts,
making deposits, giving refunds, etc.

3.12.2.2. Account level administration

Account admins can perform account-level functions
such as transfers among subaccounts, adding/removing
account members, setting the deposit mask, running
account reports.

3.12.2.3. User level administration

Users can run commands that pertain to their own
subaccounts and transactions such as determining their
balance and current usage.

4. Tested environments and integration

with resource management systems

4.1. Tested environments

To date QBank has been tested in the following
environments:

OpSys Database Scheduler
-------------- -------------- --------------
AIX 4.2-3 Postgres Maui Scheduler
RedHat Linux 6.1-7.1 Postgres Maui Scheduler

4.1.1. Operating systems

To date QBank has been in production use on the AIX
operating system (versions 4.2 and 4.3) and on RedHat
Linux 6.1 and 7.1. The author is unaware of attempts to
run under any other operating system but believes that
QBank should function with very little modification
under any of the popular UNIX brands.

4.1.2. Databases

The database that QBank has thus far been written and
tested on has been Postgres. However, as described in
Section 3.4.1, QBank was designed to use the Perl DBI
and should support a number of different databases by
just changing the connection handle provided the
database supports transactions, locking, table joins and
concurrent use of multiple handles. Even some of these
limitations could probably be worked around with minor
modifications.

4.1.3. Schedulers and resource managers

In the configurations to date, the Maui Scheduler [5]
has been used to interface to QBank. The Maui Scheduler
has an integrated allocation bank interface supporting the
use of QBank by the setting of simple configuration
parameters. Maui is commonly used to replace the
scheduling component of resource managers such as PBS
[6] or LoadLeveler [7] and has been used successfully
with both resource managers. Although the author highly
recommends a configuration involving the Maui
Scheduler, QBank should be able to be successfully used
from a variety of other resource management
configurations.

4.1.4. QBank invocations during the life of a job

The following describe some basic interaction
requirements useful when considering if QBank will work
in your environment.

4.1.4.1. Job submission time [optional -- recommended]

It is useful to check a user’s balance and ensure the
user’s account has enough cycles to run the job at the
time of the submission so that you can fail at that point
with a useful message. Otherwise, the job may fail at start
time, where it could be potentially harder to route the
message back to the user, and the job had to sit through
the queue when it had no chance to run. This phase
requires the resource manager to support a submit filter or

a wrapper could be created for the submit command in
which to run the QBank balance query.

4.1.4.2. Job start time [optional -- highly recommended]

At the start of a job QBank creates a hold on the users
account (reservation) for the maximum amount the job
could run for (based on wallclock limit). This step does
not have to be performed but it is highly recommended
because this mechanism prevents jobs from using more
credits than they have. In order to make a QBank
reservation at the start of a job, the scheduler must be able
to run either a command line process or make a C call to
the QBank API at job start time. It is also possible to
make the reservation at submit time, though there could
be some negative effects of doing it this way.

4.1.4.3. Job completion [required]

When a job completes, the reservation is removed and
the final withdrawal is made (as a single step). This
would ideally be handled by the scheduler, again either
by a system command-line call or through the API
(recommended). As an alternative for scheduler/resource
manager combinations that cannot be recompiled and
who do not have native support for allocation managers, a
feedback or notification mechanism could potentially be
used to make the withdrawal.

5. Future directions

Some of the important areas in which to focus
development effort include:

Hierarchical accounts
Delegation based security
Research how to support flatfile databases
Performance improvements (data caching, split txnlog
table)
Peer-to-peer communication infrastructure
Machine access deny list
Web-based GUI
Interface to GRID economy services

6. Summary

QBank is a unique dynamic reservation-based
allocation management system which has proven very
effective in managing the utilization of computational
resources in a multi-project environment. QBank allows
the organization to guarantee greater fairness and enforce
mission priorities by associating a charge with the use of

computational resources and allocating resource credits
which limit how much of which resources may be used
when and by whom. It tracks resource utilization and
allows for insightful planning. It also has great potential
for its ability to be used in the emerging field of meta-
computing where the problem of allocating and managing
computational resources is a critical necessity.

7. References

[1] Scott Jackson, QBank,
http://www.emsl.pnl.gov:2080/docs/mscf/qbank/
[2] Rajkumar Buyya, David Abramson and Jonathan Giddy,
An Economy Grid Architecture for Service-Oriented Grid
Computing, 10th IEEE International Heterogeneous Computing
Workshop (HCW 2001), with IPDPS 2001, SF, California, April
2001.
[3] Rich Wolski, James S. Plank, and John Brevik, G-
Commerce — Building Computational MarketPlaces for the
Computational Grid, Technical Report UT-CS-00-439,
University of Tennessee, April 2000.

[4] Bill Thigpen and Thomas Hacker, Distributed Accounting
on the GRID, Global Grid Forum Account Management
Working Group, October1999.
[5] David Jackson, Maui Scheduler,
http://www.supercluster.org/maui/
[6] PBS, http://www.pbspro.com/
[7] S. Dewey and J. Banas, “LoadLeveler: A Solution for Job
Management in the UNIX Environment,” AIXtra (May, June
1994).

8. Acknowledgments

The research was performed under Contract No. DE-

AC06-76RL0 1830 with the U.S. Department of Energy
using the Molecular Science Computing Facility (MSCF)
in the William R. Wiley Environmental Molecular
Sciences Laboratory, a national scientific user facility
sponsored by the U.S. Department of Energy's Office of
Biological and Environmental Research and located at the
Pacific Northwest National Laboratory. Pacific Northwest
is operated for the Department of Energy by Battelle.

