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Outline

● The software problem and human scalability.
● What makes quantum chemistry software difficult?
● What component architectures can do for quantum chemistry
● Three applications of component architecture:

– High-level components for geometry optimization

– Middleware components for efficient parallelization

– Low-level components for enabling new methods



  

Simulation sciences are maturing

• Mainstream research tool

• Reliable and on par with experiment

• Full realization of scientific potential requires innovative simulation capability
• Complete solutions unlikelyfrom “hero programmers” or even “hero groups”
• Progress requires large-scale collaborations within and between domains

Effective software engineering is key to world-class              
computational science

State of modeling & simulation software

Many fundamental problems remain intractable

• Accurate simulations at biologically interesting scales

• Progress requires innovative, multi-disciplinary, multi-    
  scale approaches

http://www-irn.sandia.gov/4328/images/systemphotos/redstorm-BDNov04CNV19.jpg
http://en.wikipedia.org/wiki/Image:ProteinStructure.jpg


  

Scientists as programmers
● Not known for sound software engineering practices 

– Simplest approach often preferred, even if inefficient

– Coding practices are often out-dated
● Poor style, little documentation, incomplete testing
● Difficult to convert to modern programming techniques

– Learning curve, poor training, and legacy code are issues. 
– Common programming tools that helped make large-scale scale 

software efforts such as GNU/Linux successful are not uniformly 
utilized:

● minimal use of software configuration management, build systems

● Diverse community of government/academic, noncommercial 
quantum chemistry (QC) packages
– Limit ability to leverage existing capabilities

– Interaction between QC and other fields even more difficult



  

Diverse computer architectures 
are another complicating factor

Multicore Processors Heterogeneous Multicore “Cell” 

Processors Accelerator Cards, FPGAs

● Supporting N advanced computer architectures requires > N 
times the effort of running only on my laptop

● Currently at another junction in computer architecture: can no 
longer rely on clock speed increases to improve performance

http://images.google.com/imgres?imgurl=http://www.physics.udel.edu/wwwusers/watson/scen103/intel-new.gif&imgrefurl=http://www.physics.udel.edu/wwwusers/watson/scen103/intel.html&h=387&w=538&sz=6&tbnid=bx4xzP_CUCPyMM:&tbnh=93&tbnw=130&hl=en&start=1&prev=/images%3Fq%3DMoore%2527s%2BLaw%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
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Diversity isn't a bad thing

● Diversity in software
– Allows exploration of alternative solutions

– Allow individuals with different skill sets to participate

– Perfect coordination takes unlimited effort

● Diversity in architectures
– Opportunity to find high levels of performance with less cost and 

lower power requirements

– Different algorithms have different architecture needs
● Hetergeneous solutions may eventually be a part of the solution



  

But must avoid the monolithic code trap
● Total effort is divided by duplicating capabilities
● Limits the quality of capabilities

● Limits the capabilities

Optimization

Solver

X

Solver

DK3/MP2-R12

MP2-R12e-

e-

p×V p
DK3

XX

http://www-fp.mcs.anl.gov/division/default.asp
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How can human effort scale in this
 diverse software/architecture environment?

● Object-oriented methodologies?  There are issues:
– Cannot leave out legacy codes

– Even with modern codes, design patterns may be similar but 
implementation/language is not.  Code bases incompatible at a 
low level.

– Not a complete solution

● Characteristics of a solution:
– Must support multiple languages

– Must allow for mostly independent programming in packages 
using it

– Community must agree on a few well-defined or common 
elements in the design that place minimal constraints on each 
software package

– The Common Component Architecture is designed to satisfy 
these requirements.



  

Illustration of complications in QC:
Chromium hydroxides

● Accurate thermochemical knowledge needed to understand 
contamination in industrial settings and pollution

● Experimental data is missing or inconsistent
● Six reactions used to obtain heat of formation for Cr(OH)

n
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2–6 and CrO(OH)
4
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Cr(OH)
2
 + Cr  → 2 CrOH

Cr(OH)
3
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6
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3
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3
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High accuracy is hard
● Thousands of hours of CPU time and four quantum chemistry 

code suites later ...

● Limited by abilities of each code
– Assumed additive contributions for different effects

– Choice of methods not always optimal

Table from: Nielsen, Allendorf, J. Phys. Chem. A, 110, p4093, 2006



  

What made this problem so hard?
● Different program suites have different strengths

– Some overlap, but important differences in supported methods

– Different numerical properties

– Different levels of support for various architectures

– Need better ways of interchanging program suites and sharing 
capabilities between suites

● Gets even harder when quantum chemistry is a component of 
multi-scale, multi-physics computations
– Building applications that rely on multiple application domains is 

even more complex

– Need ability to export and import capabilities



  

Component architectures are
designed to address these problems

● Language neutral interface 
specification
– Different code teams focus only on 

the common interface

– Use SIDL: Scientific Interface 
definition language

● Provides a runtime environment
– Can dynamically compose an 

application

C

C++

f77

f90

Python

Java



  

Three applications of the
Common Component Architecture

● High-level components for geometry optimization
● Middleware components for efficient parallelization
● Low-level components for enabling new methods



  

High level components and
their use in geometry optimization

Solver(TAO)
ui+1 = ui + αs …

Coordinate Model
perform transformations

f,g,Hsg,H

User 
Input

Ui+1

f,g,H

Build 
options

Ui+1 
(Visualization)

f   energy

u  cartesian coordinates

u  internal coordinates

g  gradient in cartesians

g  gradient in internals

H  Hessian in cartesians

H  Hessian in internals

s  update in internals

NWChem
Model Factory

GUI

MPQC 
Model Factory

Model

Ui+1

Builder
Construct application using 
framework builder services

Linear 
Algebra

PETSc Linear
Algebra Factory

GA Linear 
Algebra Factory

Chemistry Components

Mathematics Components

Infrastructure

SIDL Classes



  

Enabled direct comparison of
various solvers for molecular structures

Number of energy/gradient evaluations required to determine minimum energy structure 

Stand-alone 
MPQC/NWChem

TAO Solver 
Component

      

30/30—/—33/3330/3027/27Cholesterol (C27H46O)

51/5183/4243/4348/4854/54
Acetylsalicylic Acid 
(C9H8O4)

67/67121/6179/7962/6285/85
Phosphoserine 
(C3H8NO6P)

45/4589/4556/5643/4375/75Isoprene (C5H10)

19/1965/3333/3319/1926/26Glycine (C2H5NO2)

scaled unit0.5*unit0.5*unitscaled unitunitGuess Hessian

yesyesnoyesnoLine Search

TAO/LMVMBFGSBFGSTAO/LMVMBFGSAlgorithm

NWChemNWChemNWChemMPQCMPQCQC Package

+27%

+27%

-11%

+43%

+21%

Integration gave us insights into problems with our solvers ... and 
a new solver



  

Components to improve
utilization of machines

● Combining SPMD and MPMD 
paradigms

● MCMD — Multi Component 
Multiple Data
– MPMD + Component 

● The MCMD Driver launches 
multiple instances of QM 
components on subsets of 
processors (CCA)

● Each QM (gradient) component 
does multiple energy 
computations on subgroups (GA)

MCMD Hessian Driver

Go
cProps ModelFactory

NWChem_QM_1

ModelFacto
ry

cProps

Param Port

Energy
Energy

Energy

Energy
Energy

Energy

Energy
Energy

Energy

Energy
Energy

Energy

NWChem_QM_0

ModelFacto
ry

cProps

Param Port

NWChem_QM_2

ModelFacto
ry

cProps

Param Port

NWChem_QM_n

ModelFacto
ry

cProps

Param Port



  

Illustration of MCMD parallelism

Using components, a Using components, a 
Three-level Parallelism Three-level Parallelism 
scheme was implemented:scheme was implemented:
– Energy-Level

● Native NWChem code
– Gradient-Level

● Global Array groups
– Hessian Level

● Task-based using CCA

Driver

Gradient

Energy

Energy

Gradient

Energy

Energy

CCA Driver

Gradient

Energy Energy

Energy Energy

Gradient

Energy Energy

Energy Energy

Gradient

Energy Energy

Energy Energy

Gradient

Energy Energy

Energy Energy

CCA

Traditional parallelization Traditional parallelization 
scheme:scheme:
– Each step executes on Each step executes on 

the entire machinethe entire machine

E
xecution T

im
e

E
xecution T

im
e

Nodes



  

The MCMD model yielded
large performance improvements

0.1

1

10

100

0 32 64 96 128 160 192 224 256 288

Processors

T
im

e
 (

h
o

u
rs

)

one-level (native)

two-level (groups)

three-level (groups + CCA)

● Distributing work for maximum efficiency nontrivial and machine 
dependent.

● Order of magnitude improvement seen:



  

Low-level components to
extend capabilities of programs

● Integrals of many operators are at the core of quantum 
chemistry programs:

● Integrals programs do not implement all integral types
● Ability to share integrals and combine packages will

– enable new science

– permit selection of most efficient package for each machine

∫dr1r ∇
2
2r 

∫dr1dr21r12 r1
1
r12

3r24r2

∫dr1dr21r12 r1r123r24r2

∫dr1dr21r12 r1[∇1
2 , r12]3r24r2

i r =xi
a yi

b z i
c e−i r−R i

2



  

Low-level components
provide an extreme test of the CCA

● Low-level components tend to be finer grained with more 
function call overhead.  For Hartree-Fock:

This is a worst case scenario:
– More sophisticated methods, vector interfaces, and non-direct 

methods = less overhead

     

7.0%219.1204.8gradient 

8.6%93.786.3energyC5H10 cc-pVDZ
   

4.6%41.339.5gradient 

5.5%21.019.9energyH2O cc-pVQZ
   

OverheadCCAMPQC  



  

Using the integral
components to develop a new method

● Douglas-Kroll allows simple relativistic effect inclusion:

● r
12

 methods allow more rapid wfn convergence

Combination of these methods had not been done
– Even though ideal for high Z core correlation

h1
sf=c p2c21 /2−c2A pV A pB p p⋅V p B pF p p×V pY p p×V p F p

special integral types

MP2-R12
1

=d ab
ij a ij

ab
ckl

ij R
kl a ij

 


special integral type



  

Missing piece: component to
combine multiple integral packages

Architecture:

● Example of where significant functionality gets implemented 
into component specific code

NWChem
Integral Evaluator

Factory

Libint 
Integral Evaluator

Factory

p.Vp
Eval.

pxVp
Eval.

R12
Eval.

Integral Super
Factory

IntV3 
Integral Evaluator

Factory

MPQC MPQC
MP2-R12



  

Applying this to the
chromium hydroxide example

● Opportunity to combine three corrections in to one:
δ[core] + δ[rel.] + δ[basis] → δ[core+rel.+basis]

(Σ = -1.79) (Σ = 0.33)



  

A cautionary note
● Components greatly increase the flexibility of programming

– Make it easier for non-experts to construct applications

● But must understand whether or not the applications are valid
● Example from this case:

– MP2-R12 requires matrix elements of:

● Must compute additional terms, or quantify error
– Sophisticated software architectures do not eliminate the need for 

experts, but they do improve the expert's productivity

[ f , r12]
n.r.

 [−∇ 2/2 , r12][K , r12]

likewise for [r12 ,[ f , r12]]

[ f , r12]
rel

 [c  p2c21/2A pV A pB p p⋅V p B p...K ,r12]



  

Impact of petascale computing
● Issues with quantum chemistry codes:

– Replicate some data: serious rethink of algorithms to not

– Load balancing

– Depend on problem and method

– Current methods not efficient on larger problem size
● Local methods have fewer flops, but harder to parallelize

● How can components help?
– Can swap-in code efficient for FPGAs, vector, etc.

– Can implement portable parallelization models

– Can distribute human work more effectively
● Needed for implementation of more sophisticated methods



  

Conclusions

● Capability for large scale collaborative development is critical to 
advances in scientific computing

● The CCA approach is a full solution encompassing all 
necessary aspects of a successful collaborative approach

● Components won't make what we already do easier, but let us 
do things we wouldn't have considered

More Information

http://www.cca-forum.org

cca-chemistry@cca-forum.org

cljanss@sandia.gov

http://www.cca-forum.org/
mailto:cca-chemistry@cca-forum.org
mailto:cljanss@sandia.gov

