

 Component Architectures
for Quantum Chemistry: Forging New

Capabilities and Insights

Curtis Janssen
Joe Kenny
Ida Nielsen

Sandia National Laboratories

Theresa Windus
Vidhya Gurumoorthi

Manoj Krishnan
Pacific Northwest National Laboratories

Ed Valeev
Virginia Tech

CCA/Chemistry
team members and collaborators

Steve Benson
Jason Sarich
Lois Curfman McInnes

David Bernholdt
Ricky Kendall

Yuri Alexeev
Manojkumar Krishnan
Elizabeth Jurrus
Carl Fahlstrom
Jarek Nieplocha

Joe Kenny
Curtis Janssen
Ida Nielsen
Rob Armstrong
Ben Allan

Theresa Windus
Sasha Sosonkina
Fang Peng
Mark Gordon

Edward Valeev

Gary Kumfert

Outline

● The software problem and human scalability.
● What makes quantum chemistry software difficult?
● What component architectures can do for quantum chemistry
● Three applications of component architecture:

– High-level components for geometry optimization

– Middleware components for efficient parallelization

– Low-level components for enabling new methods

Simulation sciences are maturing

• Mainstream research tool

• Reliable and on par with experiment

• Full realization of scientific potential requires innovative simulation capability
• Complete solutions unlikelyfrom “hero programmers” or even “hero groups”
• Progress requires large-scale collaborations within and between domains

Effective software engineering is key to world-class
computational science

State of modeling & simulation software

Many fundamental problems remain intractable

• Accurate simulations at biologically interesting scales

• Progress requires innovative, multi-disciplinary, multi-
 scale approaches

http://www-irn.sandia.gov/4328/images/systemphotos/redstorm-BDNov04CNV19.jpg
http://en.wikipedia.org/wiki/Image:ProteinStructure.jpg

Scientists as programmers
● Not known for sound software engineering practices

– Simplest approach often preferred, even if inefficient

– Coding practices are often out-dated
● Poor style, little documentation, incomplete testing
● Difficult to convert to modern programming techniques

– Learning curve, poor training, and legacy code are issues.
– Common programming tools that helped make large-scale scale

software efforts such as GNU/Linux successful are not uniformly
utilized:

● minimal use of software configuration management, build systems

● Diverse community of government/academic, noncommercial
quantum chemistry (QC) packages
– Limit ability to leverage existing capabilities

– Interaction between QC and other fields even more difficult

Diverse computer architectures
are another complicating factor

Multicore Processors Heterogeneous Multicore “Cell”

Processors Accelerator Cards, FPGAs

● Supporting N advanced computer architectures requires > N
times the effort of running only on my laptop

● Currently at another junction in computer architecture: can no
longer rely on clock speed increases to improve performance

http://images.google.com/imgres?imgurl=http://www.physics.udel.edu/wwwusers/watson/scen103/intel-new.gif&imgrefurl=http://www.physics.udel.edu/wwwusers/watson/scen103/intel.html&h=387&w=538&sz=6&tbnid=bx4xzP_CUCPyMM:&tbnh=93&tbnw=130&hl=en&start=1&prev=/images%3Fq%3DMoore%2527s%2BLaw%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
http://images.google.com/imgres?imgurl=http://ific.uv.es/sct/activities/detectors/iv2.gif&imgrefurl=http://ific.uv.es/sct/activities/detectors/current.html&h=566&w=566&sz=13&tbnid=9X5uAmfZhpN5NM:&tbnh=131&tbnw=131&hl=en&start=1&prev=/images%3Fq%3Dleakage%2Bcurrent%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://www.computerworld.com/computerworld/records/images/story/MulticoreArchitecture1.gif&imgrefurl=http://www.computerworld.com/hardwaretopics/hardware/story/0,10801,102540,00.html&h=237&w=250&sz=14&tbnid=bwByfN0Ixc4GuM:&tbnh=100&tbnw=106&hl=en&start=51&prev=/images%3Fq%3Dmulticore%26start%3D40%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
http://images.google.com/imgres?imgurl=http://arstechnica.com/images/cell/figure7.png&imgrefurl=http://arstechnica.com/articles/paedia/cpu/cell-2.ars&h=534&w=378&sz=22&tbnid=y5wvYkP37oRKjM:&tbnh=129&tbnw=91&hl=en&start=9&prev=/images%3Fq%3DIBM%2BCell%26svnum%3D10%26hl%3Den%26lr%3D

Diversity isn't a bad thing

● Diversity in software
– Allows exploration of alternative solutions

– Allow individuals with different skill sets to participate

– Perfect coordination takes unlimited effort

● Diversity in architectures
– Opportunity to find high levels of performance with less cost and

lower power requirements

– Different algorithms have different architecture needs
● Hetergeneous solutions may eventually be a part of the solution

But must avoid the monolithic code trap
● Total effort is divided by duplicating capabilities
● Limits the quality of capabilities

● Limits the capabilities

Optimization

Solver

X

Solver

DK3/MP2-R12

MP2-R12e-

e-

p×V p
DK3

XX

http://www-fp.mcs.anl.gov/division/default.asp
http://images.google.com/imgres?imgurl=http://mathworld.wolfram.com/images/eps-gif/GlobalOptimization_1000.gif&imgrefurl=http://mathworld.wolfram.com/GlobalOptimization.html&h=296&w=366&sz=40&tbnid=tSUF-xMYavbKMM:&tbnh=95&tbnw=118&hl=en&start=4&prev=/images%3Fq%3Doptimization%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DG
http://images.google.com/imgres?imgurl=http://mathworld.wolfram.com/images/eps-gif/GlobalOptimization_1000.gif&imgrefurl=http://mathworld.wolfram.com/GlobalOptimization.html&h=296&w=366&sz=40&tbnid=tSUF-xMYavbKMM:&tbnh=95&tbnw=118&hl=en&start=4&prev=/images%3Fq%3Doptimization%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DG

How can human effort scale in this
 diverse software/architecture environment?

● Object-oriented methodologies? There are issues:
– Cannot leave out legacy codes

– Even with modern codes, design patterns may be similar but
implementation/language is not. Code bases incompatible at a
low level.

– Not a complete solution

● Characteristics of a solution:
– Must support multiple languages

– Must allow for mostly independent programming in packages
using it

– Community must agree on a few well-defined or common
elements in the design that place minimal constraints on each
software package

– The Common Component Architecture is designed to satisfy
these requirements.

Illustration of complications in QC:
Chromium hydroxides

● Accurate thermochemical knowledge needed to understand
contamination in industrial settings and pollution

● Experimental data is missing or inconsistent
● Six reactions used to obtain heat of formation for Cr(OH)

n
, n =

2–6 and CrO(OH)
4
.

Cr(OH)
2
 + Cr → 2 CrOH

Cr(OH)
3
 + 2 Cr → 3 CrOH

Cr(OH)
4
 + 3 Cr → 4 CrOH

Cr(OH)
5
 + CrOH → CrOH

Cr(OH)
6
 → CrO

3
 + 3 H

2
O

CrO(OH)
4
 → CrO

3
 + 2 H

2
O

High accuracy is hard
● Thousands of hours of CPU time and four quantum chemistry

code suites later ...

● Limited by abilities of each code
– Assumed additive contributions for different effects

– Choice of methods not always optimal

Table from: Nielsen, Allendorf, J. Phys. Chem. A, 110, p4093, 2006

What made this problem so hard?
● Different program suites have different strengths

– Some overlap, but important differences in supported methods

– Different numerical properties

– Different levels of support for various architectures

– Need better ways of interchanging program suites and sharing
capabilities between suites

● Gets even harder when quantum chemistry is a component of
multi-scale, multi-physics computations
– Building applications that rely on multiple application domains is

even more complex

– Need ability to export and import capabilities

Component architectures are
designed to address these problems

● Language neutral interface
specification
– Different code teams focus only on

the common interface

– Use SIDL: Scientific Interface
definition language

● Provides a runtime environment
– Can dynamically compose an

application

C

C++

f77

f90

Python

Java

Three applications of the
Common Component Architecture

● High-level components for geometry optimization
● Middleware components for efficient parallelization
● Low-level components for enabling new methods

High level components and
their use in geometry optimization

Solver(TAO)
ui+1 = ui + αs …

Coordinate Model
perform transformations

f,g,Hsg,H

User
Input

Ui+1

f,g,H

Build
options

Ui+1
(Visualization)

f energy

u cartesian coordinates

u internal coordinates

g gradient in cartesians

g gradient in internals

H Hessian in cartesians

H Hessian in internals

s update in internals

NWChem
Model Factory

GUI

MPQC
Model Factory

Model

Ui+1

Builder
Construct application using
framework builder services

Linear
Algebra

PETSc Linear
Algebra Factory

GA Linear
Algebra Factory

Chemistry Components

Mathematics Components

Infrastructure

SIDL Classes

Enabled direct comparison of
various solvers for molecular structures

Number of energy/gradient evaluations required to determine minimum energy structure

Stand-alone
MPQC/NWChem

TAO Solver
Component

30/30—/—33/3330/3027/27Cholesterol (C27H46O)

51/5183/4243/4348/4854/54
Acetylsalicylic Acid
(C9H8O4)

67/67121/6179/7962/6285/85
Phosphoserine
(C3H8NO6P)

45/4589/4556/5643/4375/75Isoprene (C5H10)

19/1965/3333/3319/1926/26Glycine (C2H5NO2)

scaled unit0.5*unit0.5*unitscaled unitunitGuess Hessian

yesyesnoyesnoLine Search

TAO/LMVMBFGSBFGSTAO/LMVMBFGSAlgorithm

NWChemNWChemNWChemMPQCMPQCQC Package

+27%

+27%

-11%

+43%

+21%

Integration gave us insights into problems with our solvers ... and
a new solver

Components to improve
utilization of machines

● Combining SPMD and MPMD
paradigms

● MCMD — Multi Component
Multiple Data
– MPMD + Component

● The MCMD Driver launches
multiple instances of QM
components on subsets of
processors (CCA)

● Each QM (gradient) component
does multiple energy
computations on subgroups (GA)

MCMD Hessian Driver

Go
cProps ModelFactory

NWChem_QM_1

ModelFacto
ry

cProps

Param Port

Energy
Energy

Energy

Energy
Energy

Energy

Energy
Energy

Energy

Energy
Energy

Energy

NWChem_QM_0

ModelFacto
ry

cProps

Param Port

NWChem_QM_2

ModelFacto
ry

cProps

Param Port

NWChem_QM_n

ModelFacto
ry

cProps

Param Port

Illustration of MCMD parallelism

Using components, a Using components, a
Three-level Parallelism Three-level Parallelism
scheme was implemented:scheme was implemented:
– Energy-Level

● Native NWChem code
– Gradient-Level

● Global Array groups
– Hessian Level

● Task-based using CCA

Driver

Gradient

Energy

Energy

Gradient

Energy

Energy

CCA Driver

Gradient

Energy Energy

Energy Energy

Gradient

Energy Energy

Energy Energy

Gradient

Energy Energy

Energy Energy

Gradient

Energy Energy

Energy Energy

CCA

Traditional parallelization Traditional parallelization
scheme:scheme:
– Each step executes on Each step executes on

the entire machinethe entire machine

E
xecution T

im
e

E
xecution T

im
e

Nodes

The MCMD model yielded
large performance improvements

0.1

1

10

100

0 32 64 96 128 160 192 224 256 288

Processors

T
im

e
 (

h
o

u
rs

)

one-level (native)

two-level (groups)

three-level (groups + CCA)

● Distributing work for maximum efficiency nontrivial and machine
dependent.

● Order of magnitude improvement seen:

Low-level components to
extend capabilities of programs

● Integrals of many operators are at the core of quantum
chemistry programs:

● Integrals programs do not implement all integral types
● Ability to share integrals and combine packages will

– enable new science

– permit selection of most efficient package for each machine

∫dr1r ∇
2
2r 

∫dr1dr21r12 r1
1
r12

3r24r2

∫dr1dr21r12 r1r123r24r2

∫dr1dr21r12 r1[∇1
2 , r12]3r24r2

i r =xi
a yi

b z i
c e−i r−R i

2

Low-level components
provide an extreme test of the CCA

● Low-level components tend to be finer grained with more
function call overhead. For Hartree-Fock:

This is a worst case scenario:
– More sophisticated methods, vector interfaces, and non-direct

methods = less overhead

7.0%219.1204.8gradient

8.6%93.786.3energyC5H10 cc-pVDZ

4.6%41.339.5gradient

5.5%21.019.9energyH2O cc-pVQZ

OverheadCCAMPQC

Using the integral
components to develop a new method

● Douglas-Kroll allows simple relativistic effect inclusion:

● r
12

 methods allow more rapid wfn convergence

Combination of these methods had not been done
– Even though ideal for high Z core correlation

h1
sf=c p2c21 /2−c2A pV A pB p p⋅V p B pF p p×V pY p p×V p F p

special integral types

MP2-R12
1

=d ab
ij a ij

ab
ckl

ij R
kl a ij

 


special integral type

Missing piece: component to
combine multiple integral packages

Architecture:

● Example of where significant functionality gets implemented
into component specific code

NWChem
Integral Evaluator

Factory

Libint
Integral Evaluator

Factory

p.Vp
Eval.

pxVp
Eval.

R12
Eval.

Integral Super
Factory

IntV3
Integral Evaluator

Factory

MPQC MPQC
MP2-R12

Applying this to the
chromium hydroxide example

● Opportunity to combine three corrections in to one:
δ[core] + δ[rel.] + δ[basis] → δ[core+rel.+basis]

(Σ = -1.79) (Σ = 0.33)

A cautionary note
● Components greatly increase the flexibility of programming

– Make it easier for non-experts to construct applications

● But must understand whether or not the applications are valid
● Example from this case:

– MP2-R12 requires matrix elements of:

● Must compute additional terms, or quantify error
– Sophisticated software architectures do not eliminate the need for

experts, but they do improve the expert's productivity

[f , r12]
n.r.

 [−∇ 2/2 , r12][K , r12]

likewise for [r12 ,[f , r12]]

[f , r12]
rel

 [c  p2c21/2A pV A pB p p⋅V p B p...K ,r12]

Impact of petascale computing
● Issues with quantum chemistry codes:

– Replicate some data: serious rethink of algorithms to not

– Load balancing

– Depend on problem and method

– Current methods not efficient on larger problem size
● Local methods have fewer flops, but harder to parallelize

● How can components help?
– Can swap-in code efficient for FPGAs, vector, etc.

– Can implement portable parallelization models

– Can distribute human work more effectively
● Needed for implementation of more sophisticated methods

Conclusions

● Capability for large scale collaborative development is critical to
advances in scientific computing

● The CCA approach is a full solution encompassing all
necessary aspects of a successful collaborative approach

● Components won't make what we already do easier, but let us
do things we wouldn't have considered

More Information

http://www.cca-forum.org

cca-chemistry@cca-forum.org

cljanss@sandia.gov

http://www.cca-forum.org/
mailto:cca-chemistry@cca-forum.org
mailto:cljanss@sandia.gov

