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Numeri
al algorithms based on separated representations

We use separated multiresolution representations of operators and fun
tions to solve prob-lems in high dimensionsLast summer we started testing multiresolution multiparti
le algorithms and report heresome initial results
Our goals in
lude the development of

• a new approa
h to multiparti
le quantum 
omputations that is fully adaptive andalgorithmi
ally size-extensive

• new tools for adaptive 
omputations within two-parti
le theories in quantum 
hemistryThere is no �low hanging fruit� when 
omputing in spa
es of high dimension
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Multiparti
le Computations in Quantum Me
hani
s

CI (
on�guration intera
tion), CC (
oupled 
luster), MCSCF (multi-
on�guration self-
onsistent �eld) et
.: problems with 
omputational 
omplexity and a

ura
y 
ontrol.Monte Carlo algorithms: expensive for high a

ura
y and resolution.We solve the multiparti
le S
hrödinger equation using:
• Nonlinear Approximations: un
onstrained representation of the wavefun
tion

• Adaptive multiresolution appli
ation of operators in 3D
• Adaptive a

ura
y 
ontrol
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Multiparti
le S
hrödinger equation

Consider the non-relativisti
 Hamiltonian of a system with K nu
lei and Ne ele
trons,

H =

Ne
∑

j=1

(−
1

2
∇2

j −
K

∑

k=1

Zk

||xj − Rk||
) +

∑

i>j

1

||xi − xj||
.

The ultimate goal is to solve the eigenvalue problem Hψ = Eψ without resorting to aredu
ed model.We need numeri
al methods to transition from one parti
le theories (e.g. Kohn-Sham,LDA, HF) to a multiparti
le approa
h.The �
urse of dimensionality�, the requirement of antisymmetry and size extensivity arejust several of many issues that need to be resolved.
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Algorithmi
 road map

We have developed algorithms to work with nonlinear approximations and integral equations:

• Separated representations for Green's fun
tions via Gaussians

• Redu
tion of the separation rank, alternating least-squares

• Combining antisymmetry and separated representations
• In
orporation of the ele
tron-ele
tron intera
tion within our formalism

• Adaptive appli
ation of operators in 3D
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The Separated Representation

The standard separation of variables: f(x1, x2, . . . , xd) = φ1(x1) · φ2(x2) · · · · · φd(xd)De�nition: For a given ǫ, we represent a matrix A = A(j1, j
′
1; j2, j

′
2; . . . ; jd, j

′
d) indimension d as

r
∑

l=1

slA
l
1(j1, j

′
1)A

l
2(j2, j

′
2) · · ·Al

d(jd, j
′
d),where sl is a s
alar, s1 ≥ · · · ≥ sr > 0, and A

l
i are matri
es with entries Al

i(ji, j
′
i) andnorm one. We require:

||A −
r

∑

l=1

sl A
l
1 ⊗ A

l
2 ⊗ · · · ⊗ A

l
d|| ≤ ǫ.

We 
all the s
alars sl separation values and the rank r the separation rank.Separated representations are not unique. If d ≥ 3 then the analogy with SVD breaksdown: by 
hanging ǫ we 
hange all terms rather than add/delete terms
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Example: a trigonometri
 identity

Consider the fun
tion sin(x1 +x2 + · · ·+xd) and represent it in the separated form. Theusual trigonometri
 formulas produ
e 2d−1 terms. We have

sin(

d
∑

j=1

xj) =

d
∑

j=1

sin(xj)

d
∏

k=1,k 6=j

sin(xk + αk − αj)

sin(αk − αj)
,for all 
hoi
es of α1, α2, . . . , αd , su
h that sin(αk − αj) 6= 0 for all j 6= k.Observations: e�e
tive, not unique, may be ill-
onditioned

We have developed an alternating least-squares algorithm for redu
ing the separation rankwhile 
ontrolling the 
ondition number
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Nonlinear approximations

Bases provide an approximation of a fun
tion f on a subspa
e spanned, for example, by

n elements of a Hilbert spa
e H. The sum of two n-term approximations (on the samesubspa
e) is a new n-term approximation.By nonlinear approximation we refer to using any n elements of H to �nd the best (sayin L∞ norm) n-term approximation.In this 
ase, the addition of two n-term approximations does not (typi
ally) provide an

n-term approximation and, thus, requires 
onstru
ting a new n-term approximation.In general nonlinear approximations are far superior to linear approximations but requirerobust algorithms that are not so easy to 
onstru
tNote that early quantum 
hemistry used nonlinear approximations (see Boys, Singer,Longsta�, 1960), whi
h later were repla
ed by linear approximations via orbitals
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Antisymmetry

Sin
e ele
trons are fermions, the wave fun
tion must be antisymmetri
, e.g.,

ψ(γ2, γ1, γ3, . . .) = −ψ(γ1, γ2, γ3, . . .), where γ = ((x, y, z), σ) and σ is the spin.For fun
tions of N variables, the �antisymmetrizer� is de�ned by

A =
1

N !

∑

p∈SN

(−1)pP,

where SN is the permutation group on N elements. If A is applied to a separable fun
tion,then the result 
an be expressed as a Slater determinant,
A

N
∏

j=1

φj(γj) =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

φ1(γ1) φ1(γ2) · · · φ1(γN)
φ2(γ1) φ2(γ2) · · · φ2(γN)... ... . . . ...
φN(γ1) φN(γ2) · · · φN(γN)

∣

∣

∣

∣

∣

∣

∣

∣

.
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Weak formulation

The number of terms in A
∏N

j=1 φj(γj) grows exponentially fast (although this number
an algebrai
ally be redu
ed somewhat).However, if we 
are only about 
omputing inner produ
ts with A
∏N

j=1 φj(γj), then theso-
alled Löwdin rules provide a solution,
〈A

N
∏

j=1

φj(γj),A
N
∏

j=1

φ̃j(γj)〉 =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈φ1, φ̃1〉 〈φ1, φ̃2〉 · · · 〈φ1, φ̃N〉

〈φ2, φ̃1〉 〈φ2, φ̃2〉 · · · 〈φ2, φ̃N〉... ... . . . ...

〈φN , φ̃1〉 〈φN , φ̃2〉 · · · 〈φN , φ̃N〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Computing determinant of a matrix with s
alar entries 
osts at most O(N3).For large N the matrix is banded and the 
ost is O(N).
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The Wavefun
tion as an Un
onstrained Sum of SlaterDeterminants

We 
onsider approximations to the wavefun
tion of the form

ψ(r) = A
r

∑

l=1

sl

N
∏

i=1

φl
i(γi) =

1

N !

r
∑

l=1

sl

∣

∣

∣

∣

∣

∣

∣

∣

φl
1(γ1) φl

1(γ2) · · · φl
1(γN)

φl
2(γ1) φl

2(γ2) · · · φl
2(γN)... ... ...

φl
N(γ1) φl

N(γ2) · · · φl
N(γN)

∣

∣

∣

∣

∣

∣

∣

∣

.

We impose no 
onstraints (su
h as orthogonality). Without 
onstraints, we 
an have

ψ = A
N
∏

i=1

φi(γi) + cA
N
∏

i=1

(φi(γi) + φi+N(γi))

where {φj}
2N
j=1 form an orthonormal set. Methods that 
onstrain the fa
tors to 
ome froman orthogonal set are for
ed to multiply out the se
ond term and, thus, produ
e 2N terms.
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Basi
 Green's Fun
tion Iteration

The Hamiltonian H = T + V + W =kineti
 + nu
lear + ele
troni
 parts, so

Hψ = (T + V + W)ψ = Eψ ⇔ (T −EI)ψ = −(V + W)ψ

⇔ ψ = −(T −EI)−1(V + W)ψDe�ne the Green's fun
tion
Gµ = (T − µI)−1 ,for µ < 0. The Green's fun
tion iteration (a la Kalos) is

ψ̃n = −Gµn[(V + W)ψn]

µn+1 = µn − 〈(V + W)ψn, ψn − ψ̃n〉/‖ψ̃n‖
2

ψn+1 = ψ̃n/‖ψ̃n‖and has µn −→ E
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A Modi�ed Green's Fun
tion Iteration

Sin
e 
omputing
ψ̃n = −Gµn[(V + W)ψn]does not preserve the separation rank, we de�ne ψ̃n to be of the same separation rank as

ψn and minimizing
‖ψ̃n − (−Gµn[(V + W)ψn])‖.

In order to assure 
onvergen
e to an antisymmetri
 solution, we use the pseudo-normindu
ed by the pseudo inner produ
t
〈·, ·〉A = 〈A(·),A(·)〉.This makes non-antisymmetri
 subspa
es �invisible�.
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Alternating Least Squares Fitting

To �nd ψ̃n we loop through the dire
tions, optimizing the fun
tions in that 
oordinatewhile �xing the fun
tions in other 
oordinates.For ea
h dire
tion the minimization is a linear problem, solving the normal equations

Ax = b .

Rather than optimize the 
oe�
ients in some basis, we optimize the point values, resultingin a linear system of integral equations. The entries in A are integral operators and theentries in x and b are fun
tions.
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Constru
tion of the System of Integral Equations

For dire
tion i = 1, the kernels in A are de�ned by

A(l, l′)(γ, γ′) =

〈

δ(γ′ − γ1)
N
∏

i=2

φ̃l′

i (γi), δ(γ − γ1)
N
∏

i=2

φ̃l
i(γi)

〉

A

,

where δ(·) is the delta fun
tion.The fun
tions in b are de�ned by
b(l)(γ) =

r
∑

m=1

sm

〈

δ(γ − γ1)
N
∏

i=2

φ̃l
i(γi),−Gµ[V + W]

N
∏

i=1

φm
i (γi)

〉

A

.

Details in the up
oming paper.
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Antisymmetri
 Inner Produ
ts

Let Φ denote the 
olumn ve
tor 
ontaining the fun
tions in the produ
t ∏N

i=1 φi(γi).De�ne the matrix L = L(Φ̃,Φ) with entries

L(i, j) = 〈φ̃i, φj〉A simple derivation gives us Löwdin's rule, that
〈Φ̃,Φ〉A =

|L|

N !
.

Entries in A are 
omputed via Löwdin's rule (and some tri
kery with the delta fun
tions).
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Expansion of the Green's Fun
tion

Using a separated representation Gµ ≈
∑L

p=1

⊗N

i=1F
pri we 
an apply Gµ via

〈

Φ̃,Gµ [V + W]Φ
〉

A
≈

L
∑

p=1

〈

Fp
Φ̃, [V + W]Φ

〉

A
.

To 
onstru
t this approximation, we dis
retize an integral representation of its kernel

GN(ρ, µ) = π−3N
2 (

µ

2ρ
)
3N
2 −1K3N

2 −1(µρ) = π−3N
2

∫

R

e−ρ2e2s−
2µ
4 e−2s+(3N−2)sds,

and obtain τp and wp (depending on µ) su
h that Fpri is the 
onvolution de�ned by

Fprif(γ1, . . . , γN) = wp

∫

exp
(

−τp‖ri − r′‖2
)

f(γ1, . . . , γi−1, (r′, σi), . . . , γN)dr′ .
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Two-parti
le Green's fun
tion for a

ura
y ≈ 10−4
The relative error of approximating G2(ρ, µ) by a Gaussian sum with 24 terms,

 1e-07

 1e-06

 1e-05

 0.001  0.01  0.1  1 17



Antisymmetri
 Inner Produ
ts with Operators

De�ning
Θ = L

−1
Φ̃and denoting 
onvolution with the Poisson kernel by

W [f ](r) =

∫

1

‖r− r′‖f(γ′)dγ′ ,

we 
an generalize Löwdin's rules to obtain
〈

Φ̃,WΦ

〉

A
=

1

2

|L|

N !

∫

Φ
∗
ΘW [Φ∗

Θ] − Φ
∗W [ΘΦ

∗]Θdγ

〈

Φ̃,VΦ

〉

A
=

|L|

N !

∫

V (r)Φ∗
Θdγ .

Entries in b are 
omputed using these rules, the expansion of Gµ, and some tri
kery withthe delta fun
tions. 18



Adaptive numeri
al algorithms in 3D

Adaptive numeri
al algorithms in 3D
• We have developed a fast (multiresolution, adaptive) algorithm for applying in 3D:

Gα
0 (µ) = (−

1

2
∇2 +

1

2
µ2 I)−α,where µ is real and 0 < α < 3/2. The kernel of Gα
0 is the radial fun
tion

Gα
0 (r) =

2−
1
2

Γ(α)π
3
2

(
µ

r
)
3
2−αK3

2−α(µr),

where K is the modi�ed Bessel fun
tion.
• Adaptive multiresolution pointwise multipli
ation of fun
tions
• Adaptive multiresolution inner produ
t
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Example: an adaptive multiresolution Poisson solver in 3D

Example:∇2φ(r) = −f(r), f(r;α) =
∑3

i=1(6α4α2r2i − 6α)e−αr2
i , α = 300.We 
ompute

φ(r) =
1

4π

∫

R3

f(r′)

||r − r′||
dr′ =

1

4π
W [f ].

Platform: Pentium 4 2.8 GHz

Timings:Requested error Resulting ǫL2 Basis order Appli
ation time (s) MFLOPS

10−4 2.3 × 10−5 12 2.1 1770

10−6 8.4 × 10−7 12 12 1670

10−8 2.0 × 10−9 14 33 1880
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Performan
e of the Poisson solver in 3DRequested ǫ = 10−3

p E2 E∞ Time (s) Rate (pts/s)6 5.0 · 10−3 7.9 · 10−1 1.2 7.2 · 1048 1.7 · 10−3 1.2 · 10−1 0.51 7.3 · 10410 4.4 · 10−4 3.7 · 10−2 0.68 1.1 · 105Requested ǫ = 10−6

p E2 E∞ Time (s) Rate (pts/s)10 4.7 · 10−6 3.6 · 10−4 10.3 5.7 · 10412 8.5 · 10−6 4.3 · 10−5 13.5 7.5 · 10414 6.9 · 10−8 5.2 · 10−6 20.0 8.0 · 104Requested ǫ = 10−9

p E2 E∞ Time (s) Rate (pts/s)16 2.5 · 10−10 2.2 · 10−8 68.1 3.5 · 10418 7.7 · 10−11 3.5 · 10−9 100.3 3.4 · 10420 1.2 · 10−10 1.8 · 10−8 133.4 3.5 · 104

Table 1: A

ura
y and timings for the adaptive solution of the Poisson equation
21



Multiresolution: the 
ore of the matter

Matrix of Cot[π(x− y)] and its multiresolution version
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Features of the Algorithm for Wavefun
tionApproximation

The integral equations formulation means we do not have to work in a �xed basis, but
an adapt as ne
essary. We use adaptive polynomial multiwavelets, whi
h also allow us to
ompute W [·] e�
iently.With respe
t to the number of terms r, the number of ele
trons N , and the 
ost M torepresent a fun
tion of γ, the 
omputational 
ost of algorithms is

O(r2N2(N +M logM)).For 
omparison, the 
ost to evaluate a single instan
e of Löwdin's rules is

O(N2(N +M)).
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Computed sli
es of a He wavefun
tion with r = 4
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Computed φ1
1(·, ·, 0;−1/2), s1 = 0.99725
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Computed φ2
1(·, ·, 0;−1/2), s2 = 0.06716
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Computed φ3
1(·, ·, 0;−1/2), s3 = 0.03827
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Computation of the ground state of the Helium atom

Ecomp−EHF

Eexact−EHF
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Summary

We implemented a prototype of a fully adaptive, input free, multiparti
le solver.Our formalism is shown to be 
orre
t and, so far, a

urate wavefun
tions appear to requirea relatively small separation rankCurrently we are testing and debugging the 
ode using He and LiHAs might be expe
ted, the prototype version is too slow and we work toward:

• Improving 
onvergen
e: old ideas in a new environment

• Alternative adaptive representations
• Parallelization of alternating least squares
• Algorithmi
 size-extensivityWe made a number of interesting analyti
 observations that we will try to use in ourformulationPaper detailing our approa
h is in preparation 29


