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Numerial algorithms based on separated representations

We use separated multiresolution representations of operators and funtions to solve prob-lems in high dimensionsLast summer we started testing multiresolution multipartile algorithms and report heresome initial results
Our goals inlude the development of

• a new approah to multipartile quantum omputations that is fully adaptive andalgorithmially size-extensive

• new tools for adaptive omputations within two-partile theories in quantum hemistryThere is no �low hanging fruit� when omputing in spaes of high dimension
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Multipartile Computations in Quantum Mehanis

CI (on�guration interation), CC (oupled luster), MCSCF (multi-on�guration self-onsistent �eld) et.: problems with omputational omplexity and auray ontrol.Monte Carlo algorithms: expensive for high auray and resolution.We solve the multipartile Shrödinger equation using:
• Nonlinear Approximations: unonstrained representation of the wavefuntion

• Adaptive multiresolution appliation of operators in 3D
• Adaptive auray ontrol
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Multipartile Shrödinger equation

Consider the non-relativisti Hamiltonian of a system with K nulei and Ne eletrons,

H =

Ne
∑

j=1

(−
1

2
∇2

j −
K

∑

k=1

Zk

||xj − Rk||
) +

∑

i>j

1

||xi − xj||
.

The ultimate goal is to solve the eigenvalue problem Hψ = Eψ without resorting to aredued model.We need numerial methods to transition from one partile theories (e.g. Kohn-Sham,LDA, HF) to a multipartile approah.The �urse of dimensionality�, the requirement of antisymmetry and size extensivity arejust several of many issues that need to be resolved.
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Algorithmi road map

We have developed algorithms to work with nonlinear approximations and integral equations:

• Separated representations for Green's funtions via Gaussians

• Redution of the separation rank, alternating least-squares

• Combining antisymmetry and separated representations
• Inorporation of the eletron-eletron interation within our formalism

• Adaptive appliation of operators in 3D
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The Separated Representation

The standard separation of variables: f(x1, x2, . . . , xd) = φ1(x1) · φ2(x2) · · · · · φd(xd)De�nition: For a given ǫ, we represent a matrix A = A(j1, j
′
1; j2, j

′
2; . . . ; jd, j

′
d) indimension d as

r
∑

l=1

slA
l
1(j1, j

′
1)A

l
2(j2, j

′
2) · · ·Al

d(jd, j
′
d),where sl is a salar, s1 ≥ · · · ≥ sr > 0, and A

l
i are matries with entries Al

i(ji, j
′
i) andnorm one. We require:

||A −
r

∑

l=1

sl A
l
1 ⊗ A

l
2 ⊗ · · · ⊗ A

l
d|| ≤ ǫ.

We all the salars sl separation values and the rank r the separation rank.Separated representations are not unique. If d ≥ 3 then the analogy with SVD breaksdown: by hanging ǫ we hange all terms rather than add/delete terms
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Example: a trigonometri identity

Consider the funtion sin(x1 +x2 + · · ·+xd) and represent it in the separated form. Theusual trigonometri formulas produe 2d−1 terms. We have

sin(

d
∑

j=1

xj) =

d
∑

j=1

sin(xj)

d
∏

k=1,k 6=j

sin(xk + αk − αj)

sin(αk − αj)
,for all hoies of α1, α2, . . . , αd , suh that sin(αk − αj) 6= 0 for all j 6= k.Observations: e�etive, not unique, may be ill-onditioned

We have developed an alternating least-squares algorithm for reduing the separation rankwhile ontrolling the ondition number
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Nonlinear approximations

Bases provide an approximation of a funtion f on a subspae spanned, for example, by

n elements of a Hilbert spae H. The sum of two n-term approximations (on the samesubspae) is a new n-term approximation.By nonlinear approximation we refer to using any n elements of H to �nd the best (sayin L∞ norm) n-term approximation.In this ase, the addition of two n-term approximations does not (typially) provide an

n-term approximation and, thus, requires onstruting a new n-term approximation.In general nonlinear approximations are far superior to linear approximations but requirerobust algorithms that are not so easy to onstrutNote that early quantum hemistry used nonlinear approximations (see Boys, Singer,Longsta�, 1960), whih later were replaed by linear approximations via orbitals
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Antisymmetry

Sine eletrons are fermions, the wave funtion must be antisymmetri, e.g.,

ψ(γ2, γ1, γ3, . . .) = −ψ(γ1, γ2, γ3, . . .), where γ = ((x, y, z), σ) and σ is the spin.For funtions of N variables, the �antisymmetrizer� is de�ned by

A =
1

N !

∑

p∈SN

(−1)pP,

where SN is the permutation group on N elements. If A is applied to a separable funtion,then the result an be expressed as a Slater determinant,
A

N
∏

j=1

φj(γj) =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

φ1(γ1) φ1(γ2) · · · φ1(γN)
φ2(γ1) φ2(γ2) · · · φ2(γN)... ... . . . ...
φN(γ1) φN(γ2) · · · φN(γN)

∣

∣

∣

∣

∣

∣

∣

∣

.
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Weak formulation

The number of terms in A
∏N

j=1 φj(γj) grows exponentially fast (although this numberan algebraially be redued somewhat).However, if we are only about omputing inner produts with A
∏N

j=1 φj(γj), then theso-alled Löwdin rules provide a solution,
〈A

N
∏

j=1

φj(γj),A
N
∏

j=1

φ̃j(γj)〉 =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈φ1, φ̃1〉 〈φ1, φ̃2〉 · · · 〈φ1, φ̃N〉

〈φ2, φ̃1〉 〈φ2, φ̃2〉 · · · 〈φ2, φ̃N〉... ... . . . ...

〈φN , φ̃1〉 〈φN , φ̃2〉 · · · 〈φN , φ̃N〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Computing determinant of a matrix with salar entries osts at most O(N3).For large N the matrix is banded and the ost is O(N).
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The Wavefuntion as an Unonstrained Sum of SlaterDeterminants

We onsider approximations to the wavefuntion of the form

ψ(r) = A
r

∑

l=1

sl

N
∏

i=1

φl
i(γi) =

1

N !

r
∑

l=1

sl

∣

∣

∣

∣

∣

∣

∣

∣

φl
1(γ1) φl

1(γ2) · · · φl
1(γN)

φl
2(γ1) φl

2(γ2) · · · φl
2(γN)... ... ...

φl
N(γ1) φl

N(γ2) · · · φl
N(γN)

∣

∣

∣

∣

∣

∣

∣

∣

.

We impose no onstraints (suh as orthogonality). Without onstraints, we an have

ψ = A
N
∏

i=1

φi(γi) + cA
N
∏

i=1

(φi(γi) + φi+N(γi))

where {φj}
2N
j=1 form an orthonormal set. Methods that onstrain the fators to ome froman orthogonal set are fored to multiply out the seond term and, thus, produe 2N terms.
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Basi Green's Funtion Iteration

The Hamiltonian H = T + V + W =kineti + nulear + eletroni parts, so

Hψ = (T + V + W)ψ = Eψ ⇔ (T −EI)ψ = −(V + W)ψ

⇔ ψ = −(T −EI)−1(V + W)ψDe�ne the Green's funtion
Gµ = (T − µI)−1 ,for µ < 0. The Green's funtion iteration (a la Kalos) is

ψ̃n = −Gµn[(V + W)ψn]

µn+1 = µn − 〈(V + W)ψn, ψn − ψ̃n〉/‖ψ̃n‖
2

ψn+1 = ψ̃n/‖ψ̃n‖and has µn −→ E
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A Modi�ed Green's Funtion Iteration

Sine omputing
ψ̃n = −Gµn[(V + W)ψn]does not preserve the separation rank, we de�ne ψ̃n to be of the same separation rank as

ψn and minimizing
‖ψ̃n − (−Gµn[(V + W)ψn])‖.

In order to assure onvergene to an antisymmetri solution, we use the pseudo-normindued by the pseudo inner produt
〈·, ·〉A = 〈A(·),A(·)〉.This makes non-antisymmetri subspaes �invisible�.
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Alternating Least Squares Fitting

To �nd ψ̃n we loop through the diretions, optimizing the funtions in that oordinatewhile �xing the funtions in other oordinates.For eah diretion the minimization is a linear problem, solving the normal equations

Ax = b .

Rather than optimize the oe�ients in some basis, we optimize the point values, resultingin a linear system of integral equations. The entries in A are integral operators and theentries in x and b are funtions.
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Constrution of the System of Integral Equations

For diretion i = 1, the kernels in A are de�ned by

A(l, l′)(γ, γ′) =

〈

δ(γ′ − γ1)
N
∏

i=2

φ̃l′

i (γi), δ(γ − γ1)
N
∏

i=2

φ̃l
i(γi)

〉

A

,

where δ(·) is the delta funtion.The funtions in b are de�ned by
b(l)(γ) =

r
∑

m=1

sm

〈

δ(γ − γ1)
N
∏

i=2

φ̃l
i(γi),−Gµ[V + W]

N
∏

i=1

φm
i (γi)

〉

A

.

Details in the upoming paper.
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Antisymmetri Inner Produts

Let Φ denote the olumn vetor ontaining the funtions in the produt ∏N

i=1 φi(γi).De�ne the matrix L = L(Φ̃,Φ) with entries

L(i, j) = 〈φ̃i, φj〉A simple derivation gives us Löwdin's rule, that
〈Φ̃,Φ〉A =

|L|

N !
.

Entries in A are omputed via Löwdin's rule (and some trikery with the delta funtions).
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Expansion of the Green's Funtion

Using a separated representation Gµ ≈
∑L

p=1

⊗N

i=1F
pri we an apply Gµ via

〈

Φ̃,Gµ [V + W]Φ
〉

A
≈

L
∑

p=1

〈

Fp
Φ̃, [V + W]Φ

〉

A
.

To onstrut this approximation, we disretize an integral representation of its kernel

GN(ρ, µ) = π−3N
2 (

µ

2ρ
)
3N
2 −1K3N

2 −1(µρ) = π−3N
2

∫

R

e−ρ2e2s−
2µ
4 e−2s+(3N−2)sds,

and obtain τp and wp (depending on µ) suh that Fpri is the onvolution de�ned by

Fprif(γ1, . . . , γN) = wp

∫

exp
(

−τp‖ri − r′‖2
)

f(γ1, . . . , γi−1, (r′, σi), . . . , γN)dr′ .
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Two-partile Green's funtion for auray ≈ 10−4
The relative error of approximating G2(ρ, µ) by a Gaussian sum with 24 terms,

 1e-07

 1e-06

 1e-05

 0.001  0.01  0.1  1 17



Antisymmetri Inner Produts with Operators

De�ning
Θ = L

−1
Φ̃and denoting onvolution with the Poisson kernel by

W [f ](r) =

∫

1

‖r− r′‖f(γ′)dγ′ ,

we an generalize Löwdin's rules to obtain
〈

Φ̃,WΦ

〉

A
=

1

2

|L|

N !

∫

Φ
∗
ΘW [Φ∗

Θ] − Φ
∗W [ΘΦ

∗]Θdγ

〈

Φ̃,VΦ

〉

A
=

|L|

N !

∫

V (r)Φ∗
Θdγ .

Entries in b are omputed using these rules, the expansion of Gµ, and some trikery withthe delta funtions. 18



Adaptive numerial algorithms in 3D

Adaptive numerial algorithms in 3D
• We have developed a fast (multiresolution, adaptive) algorithm for applying in 3D:

Gα
0 (µ) = (−

1

2
∇2 +

1

2
µ2 I)−α,where µ is real and 0 < α < 3/2. The kernel of Gα
0 is the radial funtion

Gα
0 (r) =

2−
1
2

Γ(α)π
3
2

(
µ

r
)
3
2−αK3

2−α(µr),

where K is the modi�ed Bessel funtion.
• Adaptive multiresolution pointwise multipliation of funtions
• Adaptive multiresolution inner produt
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Example: an adaptive multiresolution Poisson solver in 3D

Example:∇2φ(r) = −f(r), f(r;α) =
∑3

i=1(6α4α2r2i − 6α)e−αr2
i , α = 300.We ompute

φ(r) =
1

4π

∫

R3

f(r′)

||r − r′||
dr′ =

1

4π
W [f ].

Platform: Pentium 4 2.8 GHz

Timings:Requested error Resulting ǫL2 Basis order Appliation time (s) MFLOPS

10−4 2.3 × 10−5 12 2.1 1770

10−6 8.4 × 10−7 12 12 1670

10−8 2.0 × 10−9 14 33 1880
20



Performane of the Poisson solver in 3DRequested ǫ = 10−3

p E2 E∞ Time (s) Rate (pts/s)6 5.0 · 10−3 7.9 · 10−1 1.2 7.2 · 1048 1.7 · 10−3 1.2 · 10−1 0.51 7.3 · 10410 4.4 · 10−4 3.7 · 10−2 0.68 1.1 · 105Requested ǫ = 10−6

p E2 E∞ Time (s) Rate (pts/s)10 4.7 · 10−6 3.6 · 10−4 10.3 5.7 · 10412 8.5 · 10−6 4.3 · 10−5 13.5 7.5 · 10414 6.9 · 10−8 5.2 · 10−6 20.0 8.0 · 104Requested ǫ = 10−9

p E2 E∞ Time (s) Rate (pts/s)16 2.5 · 10−10 2.2 · 10−8 68.1 3.5 · 10418 7.7 · 10−11 3.5 · 10−9 100.3 3.4 · 10420 1.2 · 10−10 1.8 · 10−8 133.4 3.5 · 104

Table 1: Auray and timings for the adaptive solution of the Poisson equation
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Multiresolution: the ore of the matter

Matrix of Cot[π(x− y)] and its multiresolution version
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Features of the Algorithm for WavefuntionApproximation

The integral equations formulation means we do not have to work in a �xed basis, butan adapt as neessary. We use adaptive polynomial multiwavelets, whih also allow us toompute W [·] e�iently.With respet to the number of terms r, the number of eletrons N , and the ost M torepresent a funtion of γ, the omputational ost of algorithms is

O(r2N2(N +M logM)).For omparison, the ost to evaluate a single instane of Löwdin's rules is

O(N2(N +M)).
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Computed slies of a He wavefuntion with r = 4
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Computed φ1
1(·, ·, 0;−1/2), s1 = 0.99725
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Computed φ2
1(·, ·, 0;−1/2), s2 = 0.06716
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Computed φ3
1(·, ·, 0;−1/2), s3 = 0.03827
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Computation of the ground state of the Helium atom

Ecomp−EHF

Eexact−EHF
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Summary

We implemented a prototype of a fully adaptive, input free, multipartile solver.Our formalism is shown to be orret and, so far, aurate wavefuntions appear to requirea relatively small separation rankCurrently we are testing and debugging the ode using He and LiHAs might be expeted, the prototype version is too slow and we work toward:

• Improving onvergene: old ideas in a new environment

• Alternative adaptive representations
• Parallelization of alternating least squares
• Algorithmi size-extensivityWe made a number of interesting analyti observations that we will try to use in ourformulationPaper detailing our approah is in preparation 29


