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Numerical algorithms based on separated representations

We use separated multiresolution representations of operators and functions to solve prob-
lems in high dimensions

Last summer we started testing multiresolution multiparticle algorithms and report here
some initial results

Our goals include the development of

® 2 new approach to multiparticle quantum computations that is fully adaptive and
algorithmically size-extensive

e new tools for adaptive computations within two-particle theories in quantum chemistry

There 1s no “low hanging fruit” when computing in spaces of high dimension




Multiparticle Computations in Quantum Mechanics

Cl (configuration interaction), CC (coupled cluster), MCSCF (multi-configuration self-
consistent field) etc.: problems with computational complexity and accuracy control.

Monte Carlo algorithms: expensive for high accuracy and resolution.

We solve the multiparticle Schrodinger equation using:

e Nonlinear Approximations: unconstrained representation of the wavefunction
e Adaptive multiresolution application of operators in 3D

e Adaptive accuracy control




Multiparticle Schrodinger equation

Consider the non-relativistic Hamiltonian of a system with K nuclei and N, electrons,
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The ultimate goal is to solve the eigenvalue problem H1 = FE1 without resorting to a
reduced model.

We need numerical methods to transition from one particle theories (e.g. Kohn-Sham,
LDA, HF) to a multiparticle approach.

The “curse of dimensionality”, the requirement of antisymmetry and size extensivity are
just several of many issues that need to be resolved.




Algorithmic road map

We have developed algorithms to work with nonlinear approximations and integral equations:

e Separated representations for Green's functions via Gaussians

e Reduction of the separation rank, alternating least-squares

e Combining antisymmetry and separated representations

e Incorporation of the electron-electron interaction within our formalism

e Adaptive application of operators in 3D




The Separated Representation

The standard separation of variables:  f(z1,22,...,24) = ¢1(x1) - P2(x2) - -+ - - ba(xq)

Definition: For a given €, we represent a matrix A = A(J1,71; 72,59 - -3 Jds Jy) In

dimension d as .

1/ - /- - /- -
> st AL(j, 31) A2, ds) -+ - Al(das 1),
=1
where s; is a scalar, s1 > --- > s, > 0, and A,ZL- are matrices with entries Ai(]z,];) and
norm one. We require:

A=) siAl @ Ab® - @Al <e
=1

We call the scalars s; separation values and the rank r the separation rank.

Separated representations are not unique. If d > 3 then the analogy with SVD breaks
down: by changing € we change all terms rather than add/delete terms




Example: a trigonometric identity

Consider the function sin(x1 + 2+ - - -+ x4) and represent it in the separated form. The
usual trigonometric formulas produce 29~ terms. We have

4 4 4 sin(zy + ar — a;)
sin(z T;) = Zsin(xj) H s — o) i)
j=1 j=1 J

k=1,k#j
for all choices of a1, aa, ..., g , such that sin(ay — a;) # 0 for all j # k.

Observations: effective, not unique, may be ill-conditioned

We have developed an alternating least-squares algorithm for reducing the separation rank
while controlling the condition number




Nonlinear approximations

Bases provide an approximation of a function f on a subspace spanned, for example, by
n elements of a Hilbert space H. The sum of two n-term approximations (on the same
subspace) is a new nm-term approximation.

By nonlinear approximation we refer to using any n elements of H to find the best (say
in L°° norm) m-term approximation.

In this case, the addition of two n-term approximations does not (typically) provide an
n-term approximation and, thus, requires constructing a new n-term approximation.

In general nonlinear approximations are far superior to linear approximations but require
robust algorithms that are not so easy to construct

Note that early quantum chemistry used nonlinear approximations (see Boys, Singer,
Longstaff, 1960), which later were replaced by linear approximations via orbitals




Antisymmetry

Since electrons are fermions, the wave function must be antisymmetric, eg.,

¢(727717737 . ) — _¢(717727737 - ‘)’ where = ((xayv Z)? U) and o is the Spin-
For functions of N variables, the “antisymmetrizer” is defined by

A= S (app

PESN

where Sy is the permutation group on N elements. If A is applied to a separable function,
then the result can be expressed as a Slater determinant,

N 1 o1(71)  1(r2) - d1(w)
AH 6(%) = 17 9152(571) ¢2(5’V2) . ¢2(:YN)
= on(1) On(y2) - on(yN)




Weak formulation

The number of terms in Ané\le ®i(v;) grows exponentially fast (although this number
can algebraically be reduced somewhat).

However, if we care only about computing inner products with AH;V:l ¢i(7;), then the
so-called Lowdin rules provide a solution,

<¢17<§1> <¢17<52> e <¢17<5N>

AH% i), <¢2,:¢1> <¢2,:<1§2> <¢2,_<1~5N>

||::]2

<¢N;§51> <¢N.7€52> <¢N»5N>

Computing determinant of a matrix with scalar entries costs at most O(N?).
For large N the matrix is banded and the cost is O(N).
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The Wavefunction as an Unconstrained Sum of Slater
Determinants

We consider approximations to the wavefunction of the form

o(n)  (v2) - )

[

r N r ] o
oy =AS s [T é(n) = % S s ¢2(:’Yl) @2(72) ¢2(?YN)
=1 =1 T l=1 ' :

o) () - ()

We impose no constraints (such as orthogonality). Without constraints, we can have
N N
= Al 6i(vi) + cA] [(¢i(n) + dirn (7))
i=1 i=1

where {¢;}2) form an orthonormal set. Methods that constrain the factors to come from
an orthogonal set are forced to multiply out the second term and, thus, produce 2% terms.
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Basic Green's Function lteration

The Hamiltonian H = 7 4+ V + W =kinetic + nuclear + electronic parts, so

HY=(T+V+Wh=FEYp<= (T —-FEL)Yy=—V+W)

Define the Green's function

sSip=—(T —EI)"'(V+W)

gu — (T o Mz‘)—l’

for < 0. The Green's function iteration (a /a Kalos) is

tn
,un—i—l

wn—i—l

and has y, — F

_gun[(v -+ W)%]

Vn/|[40n]
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A Modified Green's Function lteration

Since computing

~

Yn = =G, [(V + W)thn]

does not preserve the separation rank, we define 1, to be of the same separation rank as
Y, and minimizing

[0 = (=G [V +W)ea)) |l

In order to assure convergence to an antisymmetric solution, we use the pseudo-norm
induced by the pseudo inner product

(4= (A(), AC))-

This makes non-antisymmetric subspaces “invisible".
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Alternating Least Squares Fitting

To find @Zn we loop through the directions, optimizing the functions in that coordinate
while fixing the functions in other coordinates.

For each direction the minimization is a linear problem, solving the normal equations

Ax =Db.

Rather than optimize the coefficients in some basis, we optimize the point values, resulting
in a linear system of integral equations. The entries in A are integral operators and the
entries in X and b are functions.
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Construction of the System of Integral Equations

For direction 7 = 1, the kernels in A are defined by

ALY (v,7) = <5(7’ ) [T (), (v =) [ ] q?ﬁ(%-)> ,
=2 =2 A

where () is the delta function.
The functions in b are defined by

r

m=1 1=1

b(I)(¥) =D m <5(7 —) [ #:(v), —Gu v + WI | (bl-”(%)> .
1=2 A

Details in the upcoming paper.
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Antisymmetric Inner Products

Let @ denote the column vector containing the functions in the product Hi\[:l i (Vi)
Define the matrix L = L(®, ®) with entries

A simple derivation gives us Léwdin's rule, that

- _ L
<(I)7 (I)>A — m .

Entries in A are computed via Léwdin's rule (and some trickery with the delta functions).

CU SBouULbER 15



Expansion of the Green’'s Function

Using a separated representation G,, ~ 2521 ®,f\;1 FL we can apply G, via

(8,G.[V+W >,4 zL:<]—“p<I> V+W]<I>>A.

p=1

To construct this approximation, we discretize an integral representation of its kernel

Gn(p; 1) :W_%(Qﬂ)%_lK%—l(MP) :W_%/e pPe? —Fe (3N - 2)sds,
P R

and obtain 7, and w,, (depending on p) such that F? is the convolution defined by

r;

FPf(vis--N) = wp/exp (—TpHI’Z‘ — r’||2) F(vy e Yie1, (Fy03), . oo yw)dr!
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Two-particle Green's function for accuracy ~ 10~*

The relative error of approximating Go(p, i) by a Gaussian sum with 24 terms,

o

1€-06 | S T = e e— A S e R e

1@-07 fods e B e




Antisymmetric Inner Products with Operators

Defining
@=L"'o

and denoting convolution with the Poisson kernel by

dy',
/W—WH

we can generalize Léwdin's rules to obtain

1L
A 2N

<<i>, V<I>>A — % V(r)®*Ody.

<<i>,W<I>> $*OW [®°0] — W [08*|Ody

Entries in b are computed using these rules, the expansion of G,,, and some trickery with
the delta functions.
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Adaptive numerical algorithms in 3D

Adaptive numerical algorithms in 3D

e \We have developed a fast (multiresolution, adaptive) algorithm for applying in 3D:

1 1
Go (k) = (—§V2 t3 “I)7,
where i is real and 0 < o < 3/2. The kernel of G is the radial function

G (r) =

where K is the modified Bessel function.
e Adaptive multiresolution pointwise multiplication of functions

e Adaptive multiresolution inner product

19



Example: an adaptive multiresolution Poisson solver in 3D

Example:V2¢(r) = — f(r), f(r;a) = 2521(60440427“,&-2 — 60&)6_0”’@2, a = 300.

We compute

o) =— [ L= Ly

" Ar Jps ||r — 1] 4t

Platform: Pentium 4 2.8 GHz

Timings:
Requested error | Resulting €2 | Basis order | Application time (s) | MFLOPS
10~* 2.3 x 107° 12 2.1 1770
107° 8.4 x 107" 12 12 1670
107° 2.0 x 1077 14 33 1880

I
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Performance of the Poisson solver in 3D

Requested € = 103

p Es Fw Time (s) | Rate (pts/s)
6 | 5.0-1072% | 7.9-10~"! 1.2 7.2-10%
8 | 1.7-1073 | 1.2-107 1 0.51 7.3-10%
10 | 4.4-107% | 3.7-102 0.68 1.1-10°
Requested € = 1076
2 Es Fw Time (s) | Rate (pts/s)
10 | 4.7-107% | 3.6-10~* 10.3 5.7 - 10%
121 85-107° | 4.3-107° 135 7.5-10%
14 16.9-107% | 5.2-107° 20.0 8.0-10%
Requested € = 1077
D Es Fw Time (s) | Rate (pts/s)
16 | 2.5-10719 1 22.1078 68.1 3.5 - 10%

18] 7.7-107" [ 35-1077 100.3 3.4-10%
201 1.2-1079 ] 1.8-10"° 133.4 3.5-10%

Table 1: Accuracy and timings for the adaptive solution of the Poisson equation
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Multiresolution: the core of the matter

Matrix of Cot|m(x — y)] and its multiresolution version

|| WA IE=
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Features of the Algorithm for Wavefunction
Approximation

The integral equations formulation means we do not have to work in a fixed basis, but
can adapt as necessary. We use adaptive polynomial multiwavelets, which also allow us to
compute W [-] efficiently.

With respect to the number of terms 7, the number of electrons IV, and the cost M to
represent a function of +, the computational cost of algorithms is

O(r*N?(N + M log M)).
For comparison, the cost to evaluate a single instance of Lowdin's rules is

O(N?*(N + M)).
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Computed slices of a He wavefunction with r =4
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Computed ¢1(-,+,0;—1/2), s; = 0.99725

W
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Computed ¢%(-,-,0; —1/2), so = 0.06716

116.

W
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Computed ¢5(-,-,0; —1/2), s3 = 0.03827
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Computation of the ground state of the Helium atom

Correlation energy fraction
T T
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Summary

We implemented a prototype of a fully adaptive, input free, multiparticle solver.

Our formalism is shown to be correct and, so far, accurate wavefunctions appear to require
a relatively small separation rank

Currently we are testing and debugging the code using He and LiH

As might be expected, the prototype version is too slow and we work toward:

e Improving convergence: old ideas in a new environment
e Alternative adaptive representations
e Parallelization of alternating least squares

e Algorithmic size-extensivity

We made a number of interesting analytic observations that we will try to use in our
formulation

Paper detailing our approach is in preparation
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