NWChem Meeting on Science Driven Petascale Computing and Capability Development at EMSL
January 25-26, 2007 W.R. Wiley Environmental Molecular Sciences Laboratory
Richland, WA

Toward A Practical DFT
For Large Systems

T.Tsuneda, T. Nakajima, and K. Hirao
The University of Tokyo

5K o

C_ , THE UNIVERSITY OF TOKYO



Next Generation Supercomputer Project in Japan
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RIKEN Next Generation Supercomputer Project

APRIL 2006: Japan's "3rd Science and Technology Basic Plan"
(FY2006-FY?2010) launched, placing Supercomputer as "Key
Technologies of National Importance™ (National Infrastructure)

Total budget $1 billion (2006 - 2012)
10Peta (101%) FLOPS Machine
(250 times faster than Earth Simulator)
Memory 2.5PetaB
Electricity less than 30MW
Floor Space 3,200m?
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Number names in Japanese
Kel
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10Peta flops machine is called as Kei-soku ( % ) .
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Nano-Bio Simulation

With the emergence of peta-scale computing platforms
we are entering a new period of modeling. The computer
simulations can be carried out for larger, more complex,
and more realistic systems than ever before.

Biomolecules Nano-scale molecules



Two Approaches to Molecular Theory

» Wave Function Method
Huge and successful efforts in the last 30 years

State-of-the-art methodology
Systematic, Converging to exact solution.

Accurate results for small systems
Steep N dependence of the computational effort

» Density Method (Density Functional Theory)
Not reached such a mature stage as wave function method
Not ab initio, but best semi-empirical
Simple and conceptual, Applicable to large systems
Accuracy depends on xc functionals



UT Research Activities

Ab initio Theory OP Correlation

MR, MCQDPT Parameter-Free Exchange
ASVB, QCAS, SPS-SCR&PT Long range corrected functional
Linear Scaling Method van der Waals

(PS RI, Local MP2, Plane TDDET
~-Dual-level DFT.~

Dvnamlcs
Ab initio dynamics
(TD)DFT dynamics

Hybrid QM/MM
VSCF,VCI




Density Functional Theory (DFT)

DFT may be the only tool that enables us to carry out
accurate simulations for larger systems with
reasonable computational cost. If practical DFT is
developed, which can handle biomolecules and
nanomaterials, we can enlarge greatly the scope of
computational chemistry.



Outline

» Fast Coulomb Calculation with Gaussian and Finite
Element Coulomb Method

»Dual-Level Approach to DFT

» Accurate Description of Van der Waals Interactions



Gaussian and Finite Element Coulomb
(GFC) Approach

Kurashige, Nakajima, Hirao, submitted to J.Chem.Phys.




Three time-consuming steps for DFT with GGA

BmNumerical integration of exchange-correlation (xc) part
can be implemented in linear-scaling fashion using
Becke’s weighting scheme

BCoulomb part
IS very often the most time consuming one, in particular
with GGA functionals

mDiagonalization of Fock matrix
scales cubically but insignificant compared to that of
the computation of either xc or Coulomb for systems
with up to several thousands basis functions



Fast Numerical Methods

Much effort has been made to develop efficient methods in evaluation of Coulomb
Integrals. Integral prescreening technique reduces the scaling from O(N4) to O(N?).
Furthermore several efficient computational methods have been proposed.

Auxiliary functions

Gaussians Fast Multipole Moment Method (FMM), ~ O(NlogN).
White, Johnson, Gill, Head-Gordon, JCP(1996)

Resolution of the Identity (RI) Approach, Vahtras, Almlof, Feyerisen, CPL(1993)
g d 1 4¢ ERIs are decomposed into 3c and 2c¢ ERIs.
3y = Z(pq\A)Z{(A\B) 1(2 D, (B\fS)ﬂ P

A B

Plane waves Mixed Basis Method, ERI with PW scales as ~ O(M).

Lippert, Hunter, Parrinello, MP(1997), Fusti-Molnar, Pulay, JCP(2002),
Kurashige, Nakajima, Hirao, CPL(2006)

auss - auss i 47[
3,y = J G 4 JOAU-PW _ gCass LNy RS(M)RS (h) S (h), Js(k)FpS(k) k — space
h

Pq

Grid basis Pseudospectral (PS) Method, ~ O(N2M). PS combines analytical basis
sets with numerical grid basis functions, Friesner CPL(1985), Nakajima, Hirao, JCP(2004)

g :ZWng(g)Rq(g)(Z DrsArs(g)j, A.(9) :J’Zr (|gg')_}(gsl|(g') dg’




Poisson Equation

WA possible alternative to achieve the linear-scaling is to use the
Poisson equation with the real-space method for evaluation of
the Coulomb potentials.

B The Poisson equation is represented on the grids with finite-
difference, finite-element, or wavelet basis functions.

BA huge number of grids would be demanded to describe the
Coulomb potential near the nucleus.

W The finite-difference method with the atom-centered grid is not
competitive against the conventional analytical integration.



Gaussian and Finite Element (FE) Coulomb Approach

WA new linear scaling method for the fast evaluation of Coulomb
Integrals with Gaussian basis functions

BCoulomb potential is expanded in the mixed Gaussian and finite-
element auxiliary functions that express the core and smooth
Coulomb potentials, respectively

BCoulomb integrals can be evaluated by three-center one-electron
overlap integrals

BThe computational cost and scaling for large molecules are
drastically reduced



Gaussian and Finite Element Coulomb Approach

Coulomb integrals are given with Gaussians and Coulomb
potentials

3o = | drz, (N2, (V1)

v(r) =Idr'p(r|) p(r')=> Dz (r)x (r)

=t

We expand Coulomb potentials in terms of auxiliary functions,
Gaussians and Finite Element Basis as

v(r) _ Z CiFE fiFE (r) n Z CiGauss fiGauss (r)

The atom-centered Gaussian functions represent the spherical core

potential near a nucleus, while uniform finite-element functions, a

tensor product of one-dimension Lagrange interpolate polynomials,
represent the residual, which would be smooth across the board.



Coulomb Integrals

Coulomb integrals can be evaluated by overlap integrals among
two Gaussian basis functions and one auxiliary function

3o = | drze, () 2 (V(r)
= > e [, (N2, (N £ () + e [ dray, () z, (N £75(r)

No four-center two-electron integrals
Drastically reduces the computational cost



Poisson Equation

The expansion coefficients {Ci} can be obtained by solving the
Poisson equation, which is solved algebraically by the Galerkin
method (

A, = j Vf,(r)- Vf,(r)dr

O 0] [ M kinetic integral

auxiliar
—VA(r) =4mp(r)—mems | A |x|c|=|b 1 by =[p(r): fi(r)dr
i 0 @) 1L M overlap integral

V(r); Zci - i (r)

B The linear equation is solved by using CG method.

B The matrix A is independent of p(r) and contains only kinetic-
like integrals. It Is extremely sparse in the localized auxiliary
basis functions.

W The Poisson equation scales as O(N).



Auxiliary Functions

To express the atomic core potential, we used Gaussians with
even-tempered sequence

o =a-b™t  i=12:-n

Parameters a and b are determined to maximize the Coulomb

energy with the density obtained from an atomic UHF calculation.
The number of Gaussians was incremented until the error in the Coulomb energy
becomes lower than 0.02 mEh.

We used the auxiliary Gaussians,
H(3s), Li (5s), Be(7s), C(8s3d), N(9s), O(10s4d), and F(10s4d)

C, O and F contain d-type functions since their UHF densities are not totally symmetric.

A cubic uniform finite-element, 1.8 bohr on a side, with third-
order Lagrange interpolation polynomials.



Performance

CPU : IBM Power 4 1.0GHz BLYP / SVP

Analytical and FMM results are computed using GAMESS



Table I Eqmlibrium bond lengths (R,), harmomic frequencies (), atomization energies (D,) and equblibnum total

energles (Egq) for diatomic molecules using BLYP/6-31G**

e

Analytical mtegrals GFC method
RiA) it(em™) Dy(kcal'mol ) Egs(hartree ) R(A) trplem™) Dy(kcal'mol ) Egs(hartree )
BeH 1.354 2036 57.1 -15.2422 1.354 2035 57.1 -15.2423
CH 1.145 2725 247 -38.4604 1.145 2727 848 -38.4607
CN 1.187 2112 189.2 -92.6979 1.187 2111 1893 -92.6981
Cco 1.150 2153 260.6 -113.2907 1.150 2153 260.7 -113.29011
F: 1.437 994 55.4 -199.4907 1.436 291 55.6 -199.4912
FH 0.936 4016 133.7 -100.4097 0.938 4012 134.0 -100.4103
H, 0.747 4485 111.1 -1.1679 0.747 4488 111.1 -1.1680
L1z 2.732 335 20.2 -14.9922 2.734 335 202 -14.9923
LiF 1.561 1051 137.8 -107.4008 1.561 1051 137.8 -107.4010
LiH 1.623 1377 57.1 -8.0664 1.622 1376 57.1 -3.0665
N, 1.118 2388 2344 -109.5063 1.116 2387 235.2 -109.5076
WNH 1.060 3163 87.7 -55.2015 1.059 3164 88.0 -55.2021
NO 1.176 1909 165.3 -129.8753 1.175 1914 166.1 -129. 8767
0, 1.239 1551 138.4 -150.3116 230 1552 138.7 -130.3123
OH 0.992 3617 106.2 -75.7102 0.991 3619 106.3 -75.7105
MAE : . : . 0.0006 > 0.24 0.0004

N
J




CPU time (min.)

6000

5000

4000

3000 |

2000

1000

Gaussian and FE Coulomb Approach

¢ Analytical
* FMM
¢ GFC

1000

C385H220
6490 basis functions
344 min. on IBM
Power 4 (1.0GHz)

——— ———

2000

3000 4000 5000

# of basis functions

3D diamond/ SVP

6000 7000



CPU time (min.)

6000

5000

4000 r

3000

2000

1000 |

Gaussian and FE Coulomb Approach

0 1000 2000

/ ¢ Analytical
¢ FMM ]
¢ GFC
O(N29)
C180061N60H302
5724 basis functions

252 min. on IBM
Power 4 (1.0GHz)

O(Nl.4)

3000 4000 5000 6000 7000

# of basis functions

1D Alanine a-helix chain/ SVP



Energy Derivative
The Coulomb force can be evaluated efficiently by using the

GFC method. The first derivative of the Coulomb energy E; with
respect to a nuclear coordinate X can be written as

o { [dr drzp(rl)rip(rz)} - 2far {5" (r)) o)

In the GFC method, the Coulomb potential v(r) is expanded in
the auxiliary functions. Thus the energy derivative can be
evaluated approximately by

OE G 0 G FE 0 FE
~ =2Zci [ dr( g((r)jfi (.r)+2§i“ci [ dr( ';((r)jfi (r)




Gaussian and FE Coulomb Approach

Gaussian and FE Coulomb approach offers the best
performance for evaluating Coulomb integrals without
loss of accuracy. The algorithm is
found to scale as N1.9 ~N*-2 with
system size.

Gaussian and FE Coulomb
approach makes the molecular
guantum calculations affordable

for very large systems involving
several thousands of basis functions.

Ginkgo trees



Dual-Level Approach to DFT

J. Chem.Phys., 124, 184108 (2006)




Hybrid GGA Functionals

The success of Kohn-Sham DFT was the development of xc
functionals depending on density gradients in addition to the
density itself (GGA).

A further advance is the mixing of a small fraction of exactly

computed HF exchange with GGA exchange such as B3LYP,
LC-GGA, etc.

Although hybrid GGA improves the accuracy, it also makes the
calculation more expensive.

Fast algorithms for Coulomb integrals cannot be employed for

HF exchange because its algebraic structure is not compatible
with them.



Exchange Integrals

Fast algorithms for Coulomb interaction cannot be employed for
HF exchange because its algebraic structure is not compatible
with them.

Only the pseudospectral method can be applied to HF exchange

but it scales as O(N*M).
I, =iwgz;(g)zq(g)(i DrsAs(g)) K., =iwgz;(g){i(i Drszs(g)]A,q(g)}

r

A (9) = _[)(; (Dﬁzq ()dr,

Friesner CPL(1985), Nakajima, Hirao, JCP(2004)

The GGA is efficient but less accurate while the
hybrid GGA Is more accurate but less efficient.



Dual-Level Approach to DFT
J. Chem.Phys., 124, 184108 (2006)

To perform hybrid GGA DFT calculations for large systems, we
have developed the dual-level approach. The approach is based
on the low sensitivity of the density to the choice of the functional
and the basis set. The total electron density in the ground state
can be well represented in terms of the density evaluated using the
low-quality basis set and the low-cost xc functional.

The large reduction of the computer resources can be achieved at
an affordable loss of accuracy.



Dual-Level DFT

Solve KS equation
with low-quality basis set & low-level functional
and obtain a total density

|

Use a frozen density approximation
and evaluate the total energy
with high-quality basis set & high-level functional




KS Orhbitals in the Extended Basis Function Space

We obtain a set of KS orbitals which are expanded in terms of a
finite basis set

{ZPZZ’”"ZN}

Then we expand the basis set space by adding a few more of basis
functions

Ut Zov s I ot Insas s I |

The additional members of the basis set are subject to the

condition that they be orthogonal to the original KS occupied
orbitals, ¢

(#|x)=0, k=N+LN+2--- M

This can be achieved easily by using the KS density operator P if
L-P)x)—>|x) where  P=> |¢)(4]



KS matrix in a higher-level xc functional

KS matrix is projected onto the occupied space
Fpoqcc = Z (SD)pr Frs (SD)Sq

s

Fog =Npq + 2% D#Q(pq\PQ)—tEX % DFEQ(pQ‘Pq)chV;(qC (PL)

P,Q are labels of AO of low-level basis functions and p,q are labels
for the extended basis.

The reference total electron density is defined as

0CC

pr(N =23 ¢ (NG (1) =2 Deore (Nxg(r) =22, Dz, (1) 4 (1)
i PQ Pq

- A+ AL A A s -1
with Dy, = PZQ:QpP Deofoq  L2p, = ZSPqup
q



Total Electronic Energy

The reference energy of the KS total electronic energy is given by

Eld = 22 Dpahog +22° 2 quDFEQ(pq\PQ)—tEX 22Dy DF%Q(pQ‘Pq)”xc Eyxc

P PQ pa PQ

Since no rotations between occupied and virtual orbitals are allowed,

Brillouin theorem Is not satisfied. The correction to the KS energy
IS evaluated perturbatively by

occ vir ||: |2

=253

The KS total electronic energy Is given by

& — &,

— ) (1)
EKS - EKS T EKS



Mean Absolute Errors (relative to full B3LYP) for H,, LiH,
BeH, CH, NH, OH, FH, Li,, LiF, CN, CO, N,, NO, O,, and F,

en (A) Vv (Cm_l) Etotal (a-u-) Eatom (kcal/mol)

B3LYP:LDA 0.004 28 0.0053 5.5
B3LYP:BLYP 0.003 21 0.0057 6.2

Basis sets, High-level: cc-pVVQZ, Low-level: cc-pVQZ(-pol)
E..: total energy (a.u.) E,,,: atomization energy (kcal/mol)



Mean Absolute Errors (relative to full B3LYP) for H,, LiH,
BeH, CH, NH, OH, FH, Li,, LiF, CN, CO, N,, NO, O,, and F,

rey () v(em?d) E.., (a.u.) E,,, (kcal/mol)

B3LYP:LDA 0.004 28 0.0053 5.5
B3LYP:BLYP 0.003 21 0.0057 6.2

Basis sets, High-level: cc-pVQZ, Low-level: cc-pVQZ(-pol)
E..: total energy (a.u.) E,,,: atomization energy (kcal/mol)

The CPU (in second) of self-consistent B3LYP/cc-pVQZ and
B3LYP/cc-pVQZ:LDA/cc-pVQZ(-pol) calculations of CN

KS matrix Energy
SCF construction = correction Total

full B3LYP 2169 - e 2169
B3LYP:LDA 23 62 0 85

25.5 times faster



Calculated barrier height with ZPVE (kcal/mol)
for the reaction H,CO - H, + CO

CCSD(T)/cc-pVQZ 81.3
HF/cc-pVQZ(-pol) 105.2
LDA/cc-pVQZ

B3LYP/cc-pVQZ(-pol) .
B3LYP/cc-pVQZ /8.8
B3LYP/cc-pVQZ: LDA/cc-pVQZ(-pol) 1.7

99.9 Target value
85.6

Exptl. 72.2+0.8




—O—B3LYP/cc-pVvVQZ
—{+ SVWN/cc-pVQZ

B3LYP/cc-pVQZ
15.3 kcal/mol

Energy (kcal/mol)

Hydrogen abstraction reaction
CH;+ CH,-> CH, + CH,

Exptl.
14.1 kcal/mol

Conventional DFT

LDA/cc-pVQZ

A
4

2.1 kcal/mol

(|
O

The potential energy curve computed by self-consistent B3LYP/cc-pVQZ (©) and
LDA/cc-pVQZ (&) approaches in the hydrogen abstraction reaction CH, + CH, =
CH, + CH.,.



Energy (kcal/mol)

—O—B3LYP:B3LYP
—|{+B3LYP:SVWN

B3LYP/cc-pVQ:LDA/
- cc-pVQZ(-pol)
17.5 kcal/mol

Hydrogen abstraction reaction
CH;+CH, - CH, + CH,

B3LYP:B3LYP
16.5 kcal/mol

|
|
01

2k

A
4

Dual-level DFT

|
(|
(|

The potential energy curve computed by dual-level BSLYP:B3LYP (©) and
B3LYP:LDA (&) approaches in the hydrogen abstraction reaction CH, + CH, =

CH, + CH,.




Calculated interaction energies
(kcal/mol) between two DNA bases

Cytosine-Guanine Thymine-Adenine



Calculated interaction energies (kcal/mol)

between two DNA bases

Cytosine-Guanine pair
MP2/6-31G**
B3LYP/6-31G
LDA/6-31G
B3LYP/6-31G**

B3LYP/6-31G**: LDA/6-31G

Adenine-Thymine pair
MP2/6-31G**
B3LYP/6-31G
LDA/6-31G
B3LYP/6-31G**

B3LYP/6-31G**: LDA/6-31G

31.8
35.4
49.3
31.1

31.1

17.4
19.9
30.4
16.5

16.5

Target value

Target value




Timing of Dual-Level DFT

Timing of dual-level DFT

# of basis Lower-level |Higher-lewel |Total cpu Total Energy

functions (h:m:s) (h:m:s) (h:m:s) (au)
B3LYP/6-31+G** 1854, ------ 147:00:36  147:00:36 -3794.9322
B3LYP:LDA/6-31G 882 2:51:58 7:22:36 10:15:35 -3794.9481

14.3 times faster

Valinomycin
(C54H90N6018)
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Conclusions

The dual-level DFT
approach works quite well
and the large reduction of
the computer resources can
be achieved at an affordable
loss of accuracy. Hybrid
functionals can now be
applied to bio and nano-
scale systems. Ginkgo trees




Accurate Description of van der Waals
Interactions

J. Chem.Phys., 123, 104307 (2005)

Mol.Phys. (Handy Issue) 103, 1151 (2005)
J. Chem.Phys., 117, 6010 (2002)




Van der Waals interactions

Due to this failure, application of DFT is limited.

Host-Guest systems

Biomolecules Nanotubes



Potential Energy Curves of Ne-Ne
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A strong functional dependency appeared in the
pure DFT potential



Van der Waals interactions

AEY™W — E (Pauli repulsion) - E (Dispersion attraction)

LDA predicts the binding character of vdW interactions.
However, LDA severely overestimates the binding energy and
yields a too short vdW bond. The GGA predicts repulsive
vdW interactions. Thus, none of the functionals account
successfully for vdW interactions.

MP2 significantly overestimates the binding energies and MP2
results have strong basis set dependence.

Only CCSD(T) with a large basis set gives the accurate
estimation.



Pauli repulsion

The Pauli repulsion can be described accurately only after the
correct long range electron-electron interactions are taken into
account in the exchange functional.

By splitting the Coulomb interaction into short-range and long-
range components, LC-GGA can be expressed as

e

1.73}

P

= .
on

1 — 1_erf (/urlz)_l_ erf (:urlz) ;‘5’; 1.5¢
I, I, I, 0 1.2?
ﬁ ﬁ v 0.75} erf (ur,)
3
I

GGA exchange HF exchange 02|

. . a 1 2 3 4 ]
M 1s a parameter controlling interelectrondistance ry

the separation



a)CT(R) - @CT (5.0,2\) (EV)

Hybrid GGA has good energetics, good Rydberg behavior,
good CT predictions, and good optical response.

Hyperpolarizability
T B3LYP?
00 --&--MP2 9
--m--CCSD @
500 ,
S g’
400 ,’,:.
&
o Y MP2
200 o LC-BOP
+ A-hh A AR
«tfi-:.ao ® HF
. I R
0 AJJ?;! ‘ ‘ , ,
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20 n
™ LC-BOP : ; :
~BOP CT excitation energies
AC-BOP
15 |~ LC-PBEOP '
—~ PBEOP
- LC-BLYP
10 BLYP
' ~~B3LYP
—~~ SVWN

SAC-CI

7 8
Intramolecule distance R (A)

Rydberg excitation energies = MAE

O:N \ BLYP 1.54
i, B3LYP 0.89
N LC-BLYP 0.41

SAC-CI 0.19

Reaction barrier heights (kcal/mol)

BOP 8.7 MAE
B3LYP 56
LC-BOP 2.6
AE_(eV)
BLYP 5.40 R

B3LYP 7.49 /

LC-BLYP 12.49
Exptl. 12.5

C,H,

C.F,



Dispersion Attraction

Van der Waals functional (Andersson et al, PRL 1996)

dispersion
[ dispersion —

e [ o) 1
Lde +JP\ Al

The functional provides an accurate dispersion energy
between well-separated electron distributions.

3/2

multiplied by a damping factor

6
a
fdamp = EXp _( AB] (aAB = C1RAB +C2)

r12

R, - Clementi’s atomic radii (1963)



Potential Energy Curves of Ne-Ne
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Applying the LC scheme to the exchange functionals

leads

to similar repulsive potentials



Bond energy (kcal/ mol)
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Potential Energy Curves of Rare-gas Dimers
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Van der Waals Interactions

Benzene Dimer CIF...He
Conventional GGA gives e Conventional GGA gives only linear
repulsive potentials . structures
e Our DFT with aug-cc-pVQZ
| B F
i o T-shaped minimujn:
R = ) -46.53 cm?
+ - ' - Collinear minimum f -76.43 cm-! (Re=3.19A 8e=70.§°)
(Re=341A) 4
=<
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2
=
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X fA
o CCSD(T) with aug-cc-pVQZ+BF(3s3p2d2f1g)
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Collinear minimum :}-63.53 cm-t

-41.09 cm-!
(Re=354A) 4|

Re=3.23A,8e=7(.1°)

{A} 3 imum:
D, (kcal/mol) R, (A) R,
(A) ol - cl, F ey
Present/aug-cc-pVDZ 3.17 3.6 6 -5-4-3-2-101 23 45 6

1.7
MP2/aug-cc-pVQZ 4.79 3.4

(A)



E (kcal/mol)

Naphthalene Dimer

+T
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C CCSD(T)
T CCSD(T)
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8,8 3.4 4 4.6 5.2 5.8 6.4 7

R (Angstrom)

Our DFT 6.16 kcal/mol
CBS CCSD(T)

5.73
kcal/mol



Mean absolute percentage error (%0)

Present Becke MP2

Binding energies

Dispersion 9.9 14.9 46.6
Dipole-induced dipole 5.6 11.8 8.6
Dipole-Dipole 9.2 8.5 9.5
Hydrogen bonded 7.1 8.6 2.4
Overall 7.5 11.7 19.2
Separations
Dispersion 0.11 0.08
Dipole-induced dipole  0.08 0.02
Dipole-Dipole 0.05 0.05
Hydrogen bonded 0.06 0.08
Overall 0.08 0.06

Becke & Johnson, JCP (2005) : the model requires the polarizability of each
monomer.



Basis set dependence

Benzene dimer

+ MP2/CCSD(T)
—— G=31++G*=%, with CP
T T T —¢— G6-31++G** without CP
—4—aTZ, with CP
—¢— alZ, without CP

CCSIXT)/6-31G*
MP2/6-31G* 3= - CCS5DXT)/6-311G*

&
MP2/6-311G*

E (kcal/mol)
o

CCSIXT)/aDZ

=l
-3 vtz T ¢ """
MP2/aQ}Z*
=4
3 35 4 4.5 5 55 6

Distance in Angstrom
The calculated results have little dependence on the basis set used.



Basis Set Errors

Slow convergence of the partial wave expansion due to a consequence of the
Coulomb-singularity of electron interaction

Electron cusp condition

i oY 1
| — | ==¥YIr, =0
by TO[ or,, L 2 (v, =0)

¥ =(r, = 0)(1+%r12 +j
Expansion method

1

§r12q)0 = ZCicDi

1 1
(@ |1y | D) == ZCi2<cDo \r—\®i><®i g @) =1

r12 12
Error

AE = (1—Zi:ci2<q)o ‘ri‘q)ixq)i ‘r12‘®0>]

12



Application to wt-stacking energies

|_arge planar aromatic systems (graphene sheets,
porphyrins, DNA bases) are attracted by a considerable
dispersion force.

*The dimerization energy is difficult to measure because of

decomposition

* In the limit of large parallel sheets, the dispersion force

diminishes as 1/r4, not as 1/r°




n-stacking energies

Coronene dimer (C,gH,,) & trimer (C,,Hs)  Circumcoronene dimer (C,pgH3g) & trimer (Cig,Hs,)

40 20

I

30

20

10

Interaction energy (keal/mol)

—&—trimer —&—dimer

26 3.1 3.6 4.1 4.6 5.1 5.6 6.1

Z (angstrom 26 .y I " , . - -
LC-BOP/ 6-31++G** B
1008 BFs 2 2160 BFs
= ' “ z=36A
iS_ ochﬁ/mm X 38.5 kcal/mol
(MP2 35.0 kcal/mol) r=1.3915 (MP2 98.5 kcal/mol)



Interaction energy (kcal/mol)

00

-06

-1.2

-1.8

24

The dispersion force diminishes as 1/R4, not as 1/R% ?

== LC-BOP+ALL/6-31++Gu=
— fitted to C6/R°6
— fitted 1o C4/R"4

s 38 44 49 54 59

Distance (angstrom)

.

(C6H6)2

Interaction energy (kcal/mol)

-10

.................... Lo BORALL/E 31 e
—— fitted to C6/R6
— fitted to C4/R"4

ar 420 470 5.20 570
Distance (angstrom)

6.20




energy to decompose to monomers (meV/atom)

10

60

20

40

30

20

10

Exfoliation energies per C-atom in polycyclic
~aromatic hydrocarbon dimers (LC-BOP/ 6-31++G**) -

~ Experimental data 35, 52 meV

Previous computations 8~ 170 meV

——dimer

Present (MP2)

(C6H6)2 (C24H12)2




&0
Exfoliation energies per C-atom in polycyclic 1
= 5 |.. aromatic hydrocarbon trimers (LC-BOP/ 6-31++G**)
*E Experimental data 35, 52 meV
= Previous computations 8 ~ 170 meV
2 40
@ 33.5
&
g 28.8 s
E e e 328 l:.
3
= 17.5 .
.'.IFJE 2|_'| ............. o
=+ dimer
16.6 —4— trimer
I
( ] 2 3
C:H
(CeHe)s (CouH1o)s (CosH24)s




Van der Waals Interactions

The proposed method Is expected to be a promising
alternative for calculating accurate van der Waals
interactions in larger molecules, A
since this method requires much
less computational cost compared
to high-level ab initio wave
function methods, such as
CCSD(T).

Ginkgo trees



Hirao Group (UT) e HEHRNT

Thanks to Ministry of Education, Japan Science and
Technology Agency (JST), past and present group, and
many others.
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