
T.Tsuneda, T. Nakajima, and K. Hirao
The University of Tokyo

NWChem Meeting on Science Driven Petascale Computing and Capability Development at EMSL
January 25-26, 2007 W.R. Wiley Environmental Molecular Sciences Laboratory 

Richland, WA

Toward A Practical DFT Toward A Practical DFT 
For Large Systems For Large Systems 



1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

198
3

198
5

198
7

198
9

199
1

199
3

199
5

199
7

199
9

200
1

200
3

200
5

200
7

200
9

201
1

201
3

Todai
1st in TOP500
10th in TOP500 Peta

Tera

Giga

Next Generation
Super Computer

(Year)

(GFlops)

Next Generation Supercomputer Project in Japan

Earth Simulator
41TFLOPS, 5120 nodes

Next Generation 
Super Computer



RIKEN Next Generation Supercomputer Project

Total budget $1 billion (2006 - 2012) 
10Peta (1016) FLOPS Machine

(250 times faster than Earth Simulator)
Memory 2.5PetaB

Electricity less than 30MW
Floor Space 3,200m2

APRIL 2006: Japan's "3rd Science and Technology Basic Plan" 
(FY2006-FY2010) launched, placing Supercomputer as "Key 
Technologies of National Importance" (National Infrastructure)
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With the emergence of peta-scale computing platforms 
we are entering a new period of modeling. The computer 
simulations can be carried out for larger, more complex, 
and more realistic systems than ever before.

Nano-Bio Simulation

Biomolecules Nano-scale molecules



Two Approaches to Molecular TheoryTwo Approaches to Molecular Theory

Density Method (Density Functional Theory)
Not reached such a mature stage as wave function method
Not ab initio, but best semi-empirical
Simple and conceptual, Applicable to large systems
Accuracy depends on xc functionals

Wave Function Method
Huge and successful efforts in the last 30 years
State-of-the-art methodology
Systematic, Converging to exact solution.
Accurate results for small systems
Steep N dependence of the computational effort



UT Research ActivitiesUT Research Activities

Ab initio Theory
MRMP, MCQDPT

CASVB, QCAS, SPS-SCF&PT
Linear Scaling Method

(PS, RI, Local MP2, Plane wave)

DFTDFT
OP CorrelationOP Correlation

ParameterParameter--Free ExchangeFree Exchange
Hybrid FunctionalHybrid Functional

van van derder WaalsWaals
TDDFTTDDFT

Relativistic TheoryRelativistic Theory
RESC, DK3RESC, DK3

DiracDirac--HartreeHartree--FockFock
DiracDirac--KohnKohn--ShamSham

AbAb initioinitio Model PotentialModel Potential
Relativistic Basis SetsRelativistic Basis Sets

DFTDFT
OP CorrelationOP Correlation

ParameterParameter--Free ExchangeFree Exchange
LongLong--range corrected functionalrange corrected functional

van van derder WaalsWaals
TDDFTTDDFT

DualDual--level DFTlevel DFT
UTChemUTChem

DynamicsDynamics
AbAb initioinitio dynamicsdynamics
(TD)DFT dynamics(TD)DFT dynamics

Hybrid QM/MMHybrid QM/MM
VSCF,VSCF,VCI VCI 



DFT may be the only tool that enables us to carry out 
accurate simulations for larger systems with 
reasonable computational cost.  If practical DFT is 
developed, which can handle biomolecules and 
nanomaterials, we can enlarge greatly the scope of 
computational chemistry.

Density Functional Theory (DFT)Density Functional Theory (DFT)



Outline

Fast Coulomb Calculation with Gaussian and Finite 
Element Coulomb Method

Dual-Level Approach to DFT 

Accurate Description of Van der Waals Interactions



Gaussian and Finite Element Coulomb 
(GFC) Approach

Kurashige, Nakajima, Hirao, submitted to J.Chem.Phys.



Numerical integration of exchange-correlation (xc) part
can be implemented in linear-scaling fashion using 
Becke’s weighting scheme

Coulomb part
is very often the most time consuming one, in particular 
with GGA functionals

Diagonalization of Fock matrix
scales cubically but insignificant compared to that of 
the computation of either xc or Coulomb for systems 
with up to several thousands basis functions

Three time-consuming steps for DFT with GGA



Much effort has been made to develop efficient methods in evaluation of Coulomb 
integrals. Integral prescreening technique reduces the scaling from O(N4) to O(N2). 
Furthermore several efficient computational methods have been proposed.

Auxiliary functions
Gaussians Fast Multipole Moment Method (FMM), ~ O(NlogN).

White, Johnson, Gill, Head-Gordon, JCP(1996)
Resolution of the Identity (RI) Approach, Vahtras, Almlof, Feyerisen, CPL(1993)

4c ERIs are decomposed into 3c and 2c ERIs.

Plane waves Mixed Basis Method, ERI with PW scales as ~ O(M).
Lippert, Hunter, Parrinello, MP(1997), Fusti-Molnar, Pulay, JCP(2002), 
Kurashige, Nakajima, Hirao, CPL(2006)

Grid basis Pseudospectral (PS) Method, ~ O(N2M).  PS combines analytical basis
sets with numerical grid basis functions, Friesner CPL(1985), Nakajima, Hirao, JCP(2004)

Fast Numerical Methods
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A possible alternative to achieve the linear-scaling is to use the 
Poisson equation with the real-space method for evaluation of 
the Coulomb potentials.

The Poisson equation is represented on the grids with finite-
difference, finite-element, or wavelet basis functions.

A huge number of grids would be demanded to describe the 
Coulomb potential near the nucleus. 

The finite-difference method with the atom-centered grid is not 
competitive against the conventional analytical integration.

Poisson Equation



A new linear scaling method for the fast evaluation of Coulomb 
integrals with Gaussian basis functions

Coulomb potential is expanded in the mixed Gaussian and finite-
element auxiliary functions that express the core and smooth 
Coulomb potentials, respectively

Coulomb integrals can be evaluated by three-center one-electron 
overlap integrals 

The computational cost and scaling for large molecules are 
drastically reduced

Gaussian and Finite Element (FE) Coulomb Approach



Gaussian and Finite Element Coulomb Approach

Coulomb integrals are given with Gaussians and Coulomb 
potentials

We expand Coulomb potentials in terms of auxiliary functions, 
Gaussians and Finite Element Basis as
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The atom-centered Gaussian functions represent the spherical core 
potential near a nucleus, while uniform finite-element functions, a 
tensor product of one-dimension Lagrange interpolate polynomials,
represent the residual, which would be smooth across the board.



Coulomb Integrals

Coulomb integrals can be evaluated by overlap integrals among 
two Gaussian basis functions and one auxiliary function

No four-center two-electron integrals 
Drastically reduces the computational cost
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Poisson Equation

The expansion coefficients     can be obtained by solving the 
Poisson equation, which is solved algebraically by the Galerkin
method 

The linear equation is solved by using CG method.
The matrix A is independent of         and contains only kinetic-

like integrals. It is extremely sparse in the localized auxiliary 
basis functions. 

The Poisson equation scales as O(N).
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Auxiliary Functions
To express the atomic core potential, we used Gaussians with 
even-tempered sequence

Parameters a and b are determined to maximize the Coulomb 
energy with the density obtained from an atomic UHF calculation.
The number of Gaussians was incremented until the error in the Coulomb energy 
becomes lower than 0.02 mEh.

We used the auxiliary Gaussians, 

H(3s), Li (5s), Be(7s), C(8s3d), N(9s), O(10s4d), and F(10s4d)
C, O and F contain d-type functions since their UHF densities are not totally symmetric.

A cubic uniform finite-element, 1.8 bohr on a side, with third-
order Lagrange interpolation polynomials.

n1,2,iba i
i ,1 L=⋅= −α



PerformancePerformance

CPU：IBM Power 4  1.0GHz     BLYP／SVP

Analytical and FMM results are computed using GAMESS
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CPU time for Coulomb integrals for diamond pieces
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CPU time for Coulomb integrals for alanine alpha-herix chaines

y = 2E-07x2.9161

y = 0.005x1.4217

y = 0.0271x1.0337

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000

# of basis functions

C
P

U
 ti

m
e 

(m
in

.)

Analytical

FMM

GFC

O(N2.9)

O(N1.4)

O(N1.0)

Gaussian and FE Coulomb Approach

1D Alanine α-helix chain/ SVP

# of basis functions

O(N1.4)

C180O61N60H302
5724 basis functions

252 min. on IBM 
Power 4 (1.0GHz)



  

∂EJ

∂X
=

∂
∂X

dr1 dr2ρ(r1)
1
r12

ρ(r2 )∫∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 2 dr1

∂ρ(r1)
∂X

⎛

⎝⎜
⎞

⎠⎟
v(r1)∫

The Coulomb force can be evaluated efficiently by using the 
GFC method. The first derivative of the Coulomb energy EJ with 
respect to a nuclear coordinate X can be written as

In the GFC method, the Coulomb potential v(r) is expanded in 
the auxiliary functions. Thus the energy derivative can be 
evaluated approximately by

Energy Derivative
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Gaussian and FE Coulomb ApproachGaussian and FE Coulomb Approach

Gaussian and FE Coulomb approach offers the best 
performance for evaluating Coulomb integrals without 
loss of accuracy. The algorithm is 
found to scale as N1.0 ~N1.2 with 
system size.

Gaussian and FE Coulomb 
approach makes the molecular 
quantum calculations affordable 
for very large systems involving 
several thousands of basis functions.

Ginkgo trees



DualDual--Level Approach to DFTLevel Approach to DFT

J. Chem.Phys., 124, 184108 (2006)



The success of Kohn-Sham DFT was the development of xc
functionals depending on density gradients in addition to the 
density itself (GGA).  

A further advance is the mixing of a small fraction of exactly 
computed HF exchange with GGA exchange such as B3LYP, 
LC-GGA, etc. 

Although hybrid GGA improves the accuracy, it also makes the 
calculation more expensive.

Fast algorithms for Coulomb integrals cannot be employed for 
HF exchange because its algebraic structure is not compatible 
with them. 

Hybrid GGA Functionals



Fast algorithms for Coulomb interaction cannot be employed for 
HF exchange because its algebraic structure is not compatible 
with them. 
Only the pseudospectral method can be applied to HF exchange 
but it scales as O(N2M). 

Friesner CPL(1985), Nakajima, Hirao, JCP(2004)

The GGA is efficient but less accurate while the 
hybrid GGA is more accurate but less efficient.

Exchange Integrals
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Dual-Level Approach to DFT

To perform hybrid GGA DFT calculations for large systems, we 
have developed the dual-level approach.  The approach is based 
on the low sensitivity of the density to the choice of the functional 
and the basis set.  The total electron density in the ground state 
can be well represented in terms of the density evaluated using the 
low-quality basis set and the low-cost xc functional.

The large reduction of the computer resources can be achieved at
an affordable loss of accuracy.

J. Chem.Phys., 124, 184108 (2006)



Dual-Level DFT

Solve KS equation 
with low-quality basis set & low-level functional

and obtain a total density

Use a frozen density approximation 
and evaluate the total energy 

with high-quality basis set & high-level functional



KS Orbitals in the Extended Basis Function Space

We obtain a set of KS orbitals which are expanded in terms of a 
finite basis set

Then we expand the basis set space by adding a few more of basis
functions

The additional members of the basis set are subject to the 
condition that they be orthogonal to the original KS occupied 
orbitals, 

This can be achieved easily by using the KS density operator P if

{ }Nχχχ ,,, 21 L

{ }MNNN χχχχχχ ,,,,,,, 2121 LL ++

iφ

MNNkki ,,2,1,0 L++==χφ

( ) i
i

ikk PwhereP φφχχ ∑=→−1



KS matrix in a higher-level xc functional

KS matrix is projected onto the occupied space

P,Q are labels of AO of low-level basis functions and p,q are labels 
for the extended basis. 

The reference total electron density is defined as
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Total Electronic Energy

The reference energy of the KS total electronic energy is given by 

Since no rotations between occupied and virtual orbitals are allowed, 
Brillouin theorem is not satisfied.  The correction to the KS energy 
is evaluated perturbatively by

The KS total electronic energy is given by
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Mean Absolute Errors (relative to full B3LYP) for H2, LiH, 
BeH, CH, NH, OH, FH, Li2, LiF, CN, CO, N2, NO, O2, and F2

rCN (Å)   ν (cm-1)   Etotal (a.u.)  Eatom (kcal/mol)

B3LYP:LDA          0.004        28            0.0053         5.5
B3LYP:BLYP        0.003        21            0.0057         6.2

SCF
KS matrix

construction
Energy

correction Total
full B3LYP 2169 ------ ------ 2169
B3LYP:LDA 23 62 0 85

The CPU (in second) of self-consistent B3LYP/cc-pVQZ and
B3LYP/cc-pVQZ:LDA/cc-pVQZ(-pol) calculations of CN

Basis sets,  High-level: cc-pVQZ, Low-level: cc-pVQZ(-pol)
Etotal: total energy (a.u.)   EAtom: atomization energy (kcal/mol)

Mean Absolute Errors (relative to full B3LYP) for H2, LiH, BeH, 
CH, NH, OH, FH, Li2, LiF, CN, CO, N2, NO, O2, and F2

rCN (Å)   ν (cm-1)   Etotal (a.u.)  Eatom (kcal/mol)

B3LYP:LDA          0.004        28            0.0053         5.5
B3LYP:BLYP        0.003        21            0.0057         6.2



25.5 times faster

Mean Absolute Errors (relative to full B3LYP) for H2, LiH, 
BeH, CH, NH, OH, FH, Li2, LiF, CN, CO, N2, NO, O2, and F2

rCN (Å)   ν (cm-1)   Etotal (a.u.)  Eatom (kcal/mol)

B3LYP:LDA          0.004        28            0.0053         5.5
B3LYP:BLYP        0.003        21            0.0057         6.2

SCF
KS matrix

construction
Energy

correction Total
full B3LYP 2169 ------ ------ 2169
B3LYP:LDA 23 62 0 85

The CPU (in second) of self-consistent B3LYP/cc-pVQZ and
B3LYP/cc-pVQZ:LDA/cc-pVQZ(-pol) calculations of CN

Basis sets,  High-level: cc-pVQZ, Low-level: cc-pVQZ(-pol)
Etotal: total energy (a.u.)   EAtom: atomization energy (kcal/mol)



CCSD(T)/cc-pVQZ 81.3
HF/cc-pVQZ(-pol) 105.2
LDA/cc-pVQZ 95.9
B3LYP/cc-pVQZ(-pol) 85.6
B3LYP/cc-pVQZ 78.8

Exptl. 72.2±0.8

Calculated barrier height with ZPVE (kcal/mol) 
for the reaction H2CO → H2 + CO

B3LYP/cc-pVQZ: LDA/cc-pVQZ(-pol)         77.7

Target value
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The potential energy curve computed by self-consistent B3LYP/cc-pVQZ (○) and 
LDA/cc-pVQZ (□) approaches in the hydrogen abstraction reaction CH3 + CH4 = 
CH4 + CH3.

B3LYP/cc-pVQZ  
15.3 kcal/mol

LDA/cc-pVQZ
2.1 kcal/mol

Conventional DFT

Hydrogen abstraction reaction 
CH3 + CH4 → CH4 + CH3

Exptl.
14.1 kcal/mol
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The potential energy curve computed by dual-level B3LYP:B3LYP (○) and 
B3LYP:LDA (□) approaches in the hydrogen abstraction reaction CH3 + CH4 = 
CH4 + CH3.

B3LYP:B3LYP
16.5 kcal/mol

B3LYP/cc-pVQ:LDA/
cc-pVQZ(-pol)
17.5 kcal/mol

Dual-level DFT

Hydrogen abstraction reaction 
CH3 + CH4 → CH4 + CH3



Calculated interaction energies 
(kcal/mol) between two DNA bases

Cytosine-Guanine Thymine-Adenine 



Cytosine-Guanine pair
MP2/6-31G** 31.8
B3LYP/6-31G 35.4
LDA/6-31G 49.3
B3LYP/6-31G** 31.1

Adenine-Thymine pair
MP2/6-31G** 17.4
B3LYP/6-31G 19.9
LDA/6-31G 30.4
B3LYP/6-31G** 16.5

Calculated interaction energies (kcal/mol) 
between two DNA bases

B3LYP/6-31G**: LDA/6-31G 31.1

Target value

Target value

B3LYP/6-31G**: LDA/6-31G 16.5



Valinomycin
(C54H90N6O18) 

# of basis
functions

Lower-level
(h:m:s)

Higher-level
(h:m:s)

Total cpu
(h:m:s)

Total Energy
(au)

B3LYP/6-31+G** 1854 ------ 147:00:36 147:00:36 -3794.9322
B3LYP:LDA/6-31G 882 2:51:58 7:22:36 10:15:35 -3794.9481

Timing of dual-level  DFT

Timing of Dual-Level DFT

14.3 times faster



The dual-level DFT 
approach works quite well 
and the large reduction of 
the computer resources can 
be achieved at an affordable 
loss of accuracy. Hybrid 
functionals can now be 
applied to bio and nano-
scale systems.

Conclusions

Ginkgo trees



Accurate Description of van Accurate Description of van derder Waals Waals 
Interactions Interactions 

J. Chem.Phys., 123, 104307 (2005)
Mol.Phys. (Handy Issue) 103, 1151 (2005)
J. Chem.Phys., 117, 6010 (2002)



Van der Waals interactions
Van der Waals (dispersion) interactions play an important role 
in many chemical systems. They control the structure of DNA 
and proteins, the packing of crystals, the formation of 
aggregates, host-guest systems, the orientation of molecules on 
surfaces or in molecular films, etc.

Unfortunately almost all GGA DFTs are unable to describe 
dispersive interactions. 

self-assemble

capsulation

self-assemble

capsulation

Host-Guest systemsBiomolecules Nanotubes

Due to this failure, application of DFT is limited.



Fig 2. Potential energy curves of Ne2
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Van der Waals interactions

LDA predicts the binding character of vdW interactions.  
However, LDA severely overestimates the binding energy and 
yields a too short vdW bond. The GGA predicts repulsive 
vdW interactions.  Thus, none of the functionals account 
successfully for vdW interactions.

MP2 significantly overestimates the binding energies and MP2 
results have strong basis set dependence. 
Only CCSD(T) with a large basis set gives the accurate 
estimation.

=Δ vdWE E (Pauli repulsion) - E (Dispersion attraction)
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Pauli repulsion
The Pauli repulsion can be described accurately only after the 
correct long range electron-electron interactions are taken into 
account in the exchange functional.



Rydberg excitation energies

C2H4

R

BLYP   1.54
B3LYP     0.89
LC-BLYP  0.41
SAC-CI      0.19

ΔECT(eV)

BLYP                5.40 
B3LYP              7.49
LC-BLYP        12.49
Exptl.               12.5

Hyperpolarizability
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Intramolecule distance R  (Å)

CT excitation energies

B3LYP

MP2
LC-BOP
HF Reaction barrier heights (kcal/mol)

BOP   8.7
B3LYP     5.6
LC-BOP  2.6

C2F4

MAE

MAE

Hybrid GGA has good energetics, good Rydberg behavior, 
good CT predictions, and good optical response.



Dispersion AttractionDispersion Attraction

Van der Waals functional (Andersson et al, PRL 1996)
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The functional provides an accurate dispersion energy 
between well-separated electron distributions.



Fig 2. Potential energy curves of Ne2
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Applying the LC scheme to the exchange functionals
leads to similar repulsive potentials

Potential Energy Curves of Ne-Ne



Potential Energy Curves of Rare-gas Dimers

Basis set: aug-cc-pVTZ, BSSE-corrected
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Van Van derder Waals InteractionsWaals Interactions

Our DFT with aug-cc-pVQZ

CCSD(T) with aug-cc-pVQZ+BF(3s3p2d2f1g)

ClFClF……HeHeBenzene Benzene DimerDimer

Conventional GGA gives only linear 
structures

Conventional GGA gives 
repulsive potentials

in cm-1

T-shaped minimum: 
-46.53 cm-1

(Re=3.19Å,θe=70.0°)

Cl F

Antilinear minimum:
-30.04 cm-1

(Re=3.91Å）

Collinear minimum : -76.43 cm-1

(Re = 3.41Å）

T-shaped minimum:
-41.09 cm-1

(Re=3.23Å,θe=70.1°)

Antilinear minimum:
-33.80 cm-1
(Re=3.95Å)

Collinear minimum : -63.53 cm-1

(Re = 3.54Å）

Ө

He

R

De (kcal/mol) R1 (Å) R2
(Å) 
Present/aug-cc-pVDZ 3.17 3.6

1.7
MP2/aug-cc-pVQZ 4.79 3.4



NaphthaleneNaphthalene DimerDimer
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Mean absolute percentage error (%)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Present        Becke MP2  
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Binding energies 
Dispersion 9.9 14.9         46.6
Dipole-induced dipole 5.6 11.8 8.6
Dipole-Dipole 9.2 8.5 9.5 
Hydrogen bonded 7.1 8.6 2.4
Overall 7.5 11.7 19.2

Separations 
Dispersion 0.11 0.08
Dipole-induced dipole 0.08 0.02
Dipole-Dipole 0.05 0.05
Hydrogen bonded 0.06 0.08
Overall 0.08 0.06

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Becke & Johnson, JCP (2005) ：the model requires the polarizability of each 
monomer.



Basis set dependence

The calculated results have little dependence on the basis set used.

Benzene dimer

Distance in Angstrom



Slow convergence of the partial wave expansion due to a consequence of the 
Coulomb-singularity of electron interaction

Expansion method
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Application to π-stacking energies
•Large planar aromatic systems (graphene sheets,
porphyrins, DNA bases) are attracted by a considerable 
dispersion force.

•The dimerization energy is difficult to measure because of 
decomposition
• In the limit of large parallel sheets, the dispersion force 
diminishes as 1/r4, not as 1/r6



π-stacking energies

1008 BFs

z = 3.6 Å
15.0 kcal/mol
(MP2 35.0 kcal/mol)

2160 BFs
z = 3.6 Å
38.5 kcal/mol
(MP2 98.5 kcal/mol)

x

y

x

z×

r = 1.3915

×

C2h symmetry
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Coronene dimer (C48H24) & trimer (C72H36) Circumcoronene dimer (C108H36) & trimer (C162H54)



(C6H6)2
(C54H18)2

The dispersion force diminishes as 1/R4, not as 1/R6 ?



Interlayer binding 
energies in graphite

Interlayer binding energies in graphite

Exfoliation energies per C-atom in polycyclic 
aromatic hydrocarbon dimers

Experimental data         35, 52 meV
Previous computations      8 ~ 170 meV

eV

(C6H6)2 (C24H12)2 (C54H18)2
(C96H24)2

27.3 (49.1)

32.830.9 (69.0)

Present (MP2)

16.6 (34.4)

(LC-BOP/ 6-31++G**)



Interlayer binding 
energies in graphite

Interlayer binding energies in graphiteExperimental data         35, 52 meV
Previous computations      8 ~ 170 meV

(C6H6)3 (C24H12)3 (C54H18)3
(C96H24)3

33.5
28.8

17.5

16.6

27.3
30.9

32.8

Exfoliation energies per C-atom in polycyclic 
aromatic hydrocarbon trimers (LC-BOP/ 6-31++G**)



The proposed method is expected to be a promising 
alternative for calculating accurate van der Waals 
interactions in larger molecules, 
since this method requires much 
less computational cost compared 
to high-level ab initio wave 
function methods, such as 
CCSD(T). 

Van Van derder Waals InteractionsWaals Interactions

Ginkgo trees
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