
Quantum Monte Carlo advances: pfaffian 
wave functions, topology of fermion nodes 

and QMC/MD methods

Michal Bajdich, Jindra Kolorenc, Lucas Wagner, 
Kevin Schmidt (ASU), J.Grossman (UCB) Lubos Mitas

North Carolina State University

Lubos_Mitas@ncsu.edu

PNNL,  January 2007



Talk topics

QMC intro 

Topology of fermion nodes 

Pfaffians/pairing wave functions

QMC/MD

Suggestions to NWChem

Lubos_Mitas@ncsu.edu



Electronic structure: motivation and 
challenges

System of interacting electrons and ions in continuous space

H r1 , r2 , ... E r1 , r2 , ...

Fundamental properties of many-body wavefunctions

Development of accurate methods for solving the Schr. eq. 

Interesting applications:
- ground states of strongly correlated systems
- excited states, gaps, optical properties
- responses to external fields
- T>0, moleculer dynamics, etc ...
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Basics of diffusion (projector) Monte Carlo
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Construct an approximate trial function and project out the ground state

or, equivalently, solve the imaginary-time Schr. eq. (Bloch's eq.)

R , t G R ,R ' , R ' , t d R ' ,

ground R lim t exp tH T R

Solved by simulation of an equivalent, diffusion-like stochastic process

● wavefunction is sampled by points in 3N-dim space (“random walkers”)

wavefunction   <=>  density of random walkers

● walkers evolved according to the propagator (transition probability) 

Essentially an exact mapping: statistical method of solution!

G R,R ' , R e H R '



Toy model: 1D harmonic oscillator

Lubos_Mitas@ncsu.edu

Propagator

G x,x', t

diffusion

init x

Ce x x' 2 2 e V x ET

ground x

H T V x

renorm

V x x2



Fermion sign problem
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Naïve approach for  fermionic wave functions: decompose to + and -

Unfortunately,  + and - components converge independently to the 
lowest energy solution (which is bosonic) because Schr. eq. is linear! 

T R T
+ R T

- R

t
+ R , t H + R, t

Fermion "signal" decays exponentially quickly into a bosonic "noise"

limt
+ R , t  limt

- R, t   exp EFermi EBoson t

t
- R , t H - R , t

+ -



Efficiency and fermion sign problem: fixed-node 
diffusion Monte Carlo (FNDMC) 
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f R , t G* R ,R ' , f R ' , t dR '

lim f R,   T R ground R

Fermion node:  defined as

Fixed-node approximation:                             

Antisymmetry (nonlocal) replaced by a boundary (local)

G* R,R ' ,
R exp H R '

T R ' T
1 R

f R, t 0

f R, t T R R, t , T HFeUcorr det det eUcorr

r1,r2, ... ,rN 0



Fermion node toy model: excited state  of 
harmonic oscillator
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Propagator

G x,x', t

init x

excit x

H T V x
V x x2

+ boundary condition
(evaluate trial function)

node
diffusion

Ce x x' 2 2 e V x ET

renorm



MnO solid calculations: paradigmatic TMO 
antiferromagnet   
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- large correlation effects, difficult to
treat by traditional methods: 
competition of Coulomb, exchange,
correlation and crystal-field effects  

- supercells with 8, 16, 20 and 24 atoms:
up to ~ 250 valence electrons

- gap estimations using promotion
from valence -> to conduction band 
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Band structure of MnO by HF and DFT: 
UHF       B3LYP       PW91 
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MnO cohesion and band gap

Cohesive energy [eV] 

HF       B3LYP      DMC           Exp.
6.0         10.2         9.40(5)        9.5

Band gap:     B  -> Γαμμα excitation

HF       B3LYP      DMC           Exp.
14.2        4.0        4.6(3)          4.2

Small bias towards higher energy for the excited state
(we need better virtuals for solids!!!)
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BaTiO3 cohesion

Cohesive energy [eV]  

DFT/PW91        DMC/HF       DMC/DFT           Exp.
38.0               30.9(4)          31.2(4)            31.56

Note: cohesion comes very close to experiment 
from a straightforward application of QMC

Current effort:  ferroelectric distortion                     
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FeO solid ground state and structure
(DFT results plain wrong, also for FeO 

molecule)

DFT/PW91          DMC/DFT        Exp.

iB8-B1/AFMII     - 0.2 eV 0.5 eV              >0             

cohesion       ~ 11 eV                9.6 (1) eV     9.7 eV

gap             0 (metal)             ~ 5 eV     ~ 4 eV

Current effort: MnO high pressures, collapse of magnetic 
moments (experiments at LLNL)
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Electronic structure of hexaborides CaB6, 
LaxCa1-xB6 , ...

3% La-doped CaB6 is a weak magnet up to 600-900K (!)

No d or f electrons:   - genuine itinerant magnetism ?

Calculations inconclusive:
semimetal or insulator 

Undoped CaB6 :  insulator ? exitonic insulator ? metal ?

Experiments contardictory: 
both metallic and insulating
behavior observed

Can we calculate the gap before the experiment ?
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CaB6 band structure in Hartree-Fock

Large gap
of the order of 7 eV
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CaB6 band structure in DFT - B3LYP

Gap is now only 
about 0.5 eV 
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CaB6 band structure in DFT - PW91

1 eV  overlap at the 
X point:
d-states on Ca 

Fixed-node
DMC gap:

1.2(2) eV

X                Γ



Example of application: which is the lowest 
energy isomer of C20 ???
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ring                                    bowl                    cage

J.C. Grossman, L. Mitas, K. Raghavachari, Phys. Rev. Lett. 75, 3870 (1995)



QMC was the first method to predict this 
(later confirmed by independent methods)
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J.C. Grossman, L. Mitas, K. Raghavachari, Phys. Rev. Lett. 75, 3870 (1995)



Another example: evaluate correlation 
energy from a single atom to molecule to 

clusters, all the way to the solid 
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Summary on performance of fixed-node 
DMC (“plain vanilla” method) 

- fixed-node DMC typically recovers about 95% of the valence 
correlation energy (done for up to ~ 1000  electrons)

- energy differences agree with experiments within a few %

- method scales like a N^3 where N is the number of valence
electrons (core electrons eliminated by pseudopotentials)

- applied to a number of systems, eg, electron gas and quantum
liquids, atoms, molecules, solids etc; often the results became
benchmarks for other methods

- about two orders of magnitude slower than mean-field methods
but very efficient (perfectly scalable) on parallel architectures
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Computational advantages of QMC:
flagship application for each newgeneration 

of the largest parallel machines
- scaling in the number of particles: Na, a = 1 ~ 3

- sampling walkers (almost) independent -> flexibility
current developments to scale to  100,000 compute cores!!!

- cycle intensive, less memory intensive

- can accommodate any basis, any type of trial function

- enable to focus on interesting physics: type of many-body
effects which are important, symmetries, phases, processes

- correlation problem “cornered” into the last 5% of E_corr!



Beyond the fixed-node DMC: magnetism, 
superconductivity, etc
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Fixed-node approximation

- bosonization of the fermionic problem

- important (funadmental) approximation: 

antisymmetry ->  boundary condition
(nonlocal) (local)

- fermion node is (3N-1)-dim hyper -
surface:

- easy to enforce (check the sign of
the determinant)

- difficult to parametrize with arbitrary
accuracy (more on that later)   

Green surface: 3D cut of 
59-dimensional fermion node 
hypersurface



Fermion node: manifold of configurations for which 
the wave function vanishes

The (only) approximation in quantum Monte Carlo
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f R , t G* R ,R ' , f R ' , t dR '

Fermion node:                                    (dN-1)-dimen. hypersurface

Fixed-node approximation:                    (boundary replaces antisymmetry)      

The Schrodinger eq.

Exact node       ->     exact energy in polynomial time

f R, t 0

f R, t Trial R Ground R

r1,r2, ... ,rN 0

Exact nodes:   - in 1D, particle concidence points  
- in 3D known for a few 2e and 3e states

In general,  high-dimensional problem influenced by many-body
effects and interactions



Exciting new developments in
antisymmetry/fermion sign problem: ideas and

key focal points
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”Sample-them-out”:   - nodal realease (Ceperley '80s)
- walker pairing (Kalos '90s), etc

“Understand the nodes”:  - general properties, new insights
- more fundamental issues (?)  

Key questions: - correct topology, ie, number of nodal cells
- correct shape

“Capture the physics (the nodes will follow)”: 

Key effort:  - more accurate wavefunctions 
- better physics, better math
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From a few-electron exact nodes, numerical studies -> 
Conjecture: for d >1 ground states have only two 

nodal cells, one “+” and one “-”

So far unproven even for noninteracting systems !

How to prove that some          has only two cells (Ceperley '92, 
numerical proof for 200 noninteracting fermions): 

Find a point such that triple exchanges connect all the particles
into a single cluster: then there are only two nodal cells

+    _ rN
r1    

r2

All-particle
configuration 

space

R
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Explicit proof of two nodal cells for spin-polarized
noninteracting system for any size

(Idea illustrated for 2D harmonic fermions)

Evaluated explicitly by recursion:
factorizing out “lines of particles”

By induction: if       particles are connected, then also       . QED.
M 1,...,NM M 1 1,...,NM I

1 i j

i, j I
1 yj yi 1 k M k 1

nk

.

.

1 ... M M 1
M 1,..,NM Cgaussdet 1,x,y,x2,xy,y2,...

Place fermions in a Pascal-like triangle 

lines ->                                   particles

The wavefunction:

M
.

M 1

1

3

21

NM M 1 M 2 2M

NM NM 1
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Two nodal cells theorem: generic (and fundamental) 
property of fermionic ground states of  many models

Two nodal cells theorem. Consider a spin-polarized system 
with a closed-shell ground state given by a Slater determinant 
times an arbitrary prefactor (which does not affect the nodes)

Let the Slater matrix elements be monomials             
of positions or their homeomorphic maps. 

Then the wavefunction has only two nodal cells.

With some effort can be generalized to some open shells. 
(Mitas 2006)

exact C 1,...,N det i j
xi

n yi
mzi

l...
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For noninteracting/HF systems adding another spin 
channel or imposing additional symmetries generate 

more nodal cells

Unpolarized nonintenracting/HF systems: 2*2=4 nodal cells!!!
->    product of two independent Slater determinants

- in general, imposing symmetries generates more nodal cells:
the lowest quartet of S symmetry 4S(1s2s3s) has six nodal cells 

What happens when interactions are switched on ?

“Nodal/topological degeneracy” is lifted and multiple
nodal cells fuse into the minimal two again!

First time showed on Be atom, Bressanini etal '03

HF det det
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Correlation in homogeneous electron gas: singlet pair 
of e- winds around the box without crossing the node

ri ri 5 offset , i 1,... ,5

Correl.

HF

HF crosses the node multiple times, BCS does not (supercond.) 

Wavefunction along the winding
path 



Lubos_Mitas@ncsu.edu

The same applies to the nodes of 
temperature/imaginary time density matrix

Analogous argument applies to temperature density matrix

fix            ->  nodes/cells  in the       subspace

At high (classical) temperatures 

It is not too difficult to prove that at classical temperatures
R and R' subspaces have only two nodal cells: it is stunning 
since there is a summation over the whole spectrum!

PRL, 96, 240402 /cond-mat/0601485 (the basic ideas)
cond-mat/0605550  (all the models, density matrix) 

R,R', CNdet exp ri r 'j
2 2

R,R', exp E R R'
R', R
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Two nodal cells: generic property, possible 
exceptions

The next problem: the exact shape of the node 

Topology of the nodes closed-shell ground states is  
surprisingly simple:

The ground state node bisects the configuration space
(the most economic way to satisfy the antisymmetry)

Possible exceptions:
- nonlocal interactions, strong interactions 
- impose more symmetries or boundaries 
- large degeneracies

The next problem:the exact nodal shape is difficult to get!
The key: better wavefunctions, better math, better physics
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More general wave function form -> object called 
pfaffian: signed sum of all distinct pair partitions

The elements form a skew-symmetric matrix, eg, for 2N=4 

Signs:         +                                   - +

1    2    3    4                 1    2     3     4  1     2     3      4

pf aij P
1 Pai1 j1

...aiN jN , ik jk , k 1,...,N

pf

0 a12 a13 a14

a12 0 a23 a24

a13 a23 0 a34

a14 a24 a34 0

a12a34 a13a24 a14a23
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Relations of determinants and pfaffians 

● For any square matrix B

● For any skew-symmetric matrix A (2nx2n) 

● Any determinant can be written as pfaffian but not vica versa:
pfaffian is more general, determinant is a special case

More identities exist, pfaffian can be expanded in minors, etc,
pfaffian can be calculated by a Gaussian-like “elimination” directly

det A pf A 2

det B 1 n n 1 2pf 0 B
BT 0
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The simplest antisymmetric wavefunctions built from
one-particle vs. pair orbitals 

One-particle (spin)orbitals wavefunction: Slater determinant

Pair orbital wavefunction: pfaffian

Note: in the simplest case only one pair (spin)orbital! 

symmetric                            antisymmetric

xi ,xj ri ,rj ri, rj ri, rj ri ,rj

HF A h1 x1 h2 x2 ... det hk xi xi ri, i i ,k 1,...,N

PF A x1,x2 x3, x4 ... pf xi,xj i , j 1,... ,2N
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Bardeen-Cooper-Schrieffer  (BCS):
a special case of the pfaffian wavefunction

Antisymmetized product of singlet pair orbitals          

- used to describe supeconductivity or BEC,  Sorella et al for
electronic structure, '04 

Problem with spin-polarized case:               while

where             are one-particle orbitals (usually HF) 

- fully spin-polarized state trivially recovers Hartree-Fock  :-( 

BCS A 1,n ... n,2n h1 2n 1 ... ho 2n o

N n o

i, j

N n

hk i

BCS A i, j det i , j

BCS A hk i det hk i HF
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Beyond BCS: pfaffian wavefunctions with both singlet 
and triplet pairs -> all spin states treated consistently

- pairing orbitals expanded in one-particle basis 

- unpaired        

- expansion coefficients and the Jastrow correlation optimized 
(M.Bajdich, L.M., etal, PRL, 2006)

PF pf T

T T 0
exp Ucorr

i , j b h i h j h i h j
i, j a h i h j h i h j

i c h i
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Results: correlation energies of atoms, dimers 
Correlation gain from singlet vs triplet pairing 
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Multi-pfaffian wavefunctions for first row atoms: 
FNDMC ~98-99 % of correlation with a few pfaffians!

Table of % of correlation energies recovered for CI vs MPF w.f.
- n denotes the number of dets/pfs in the expansion       

- number of pfaffians n
- subject to symmetry constraints 
- in principle all distinct pairs could be included

M. Bajdich et al, PRL 96, 130201 (2006)
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3D scan of the oxygen atom node by 2e- singlet: 
Topologies of different wfs (fixed-node DMC Ecorr)

HF (94.0(2)%)        MPF (97.4(1)%) CI (99.8(3)%)
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Observations from comparison  of HF and “exact”
nodes

- the two nodal cells for
Coulomb interactions as well

HF
- the nodal openings have rather           
fine structure

- openings are important -> 
~ 5% of the correlation energy

- although topologically incorrect, 
away from openings the HF nodes     CI
unexpectedly close to exact
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Summary on topology of nodes and pairing wave 
functions

- explicit proof that, in general, fermionic ground states and 
density matrices have two nodal cells for d>1 and for any size -
fundamental property of fermionic systems

- overall mean-field nodes excellent (that's why fixed-node works)
but nodal openings in correlated wave functions and exact nodal 
shape important: 5 % of correlation energy; better physics and
better math: pfaffian pairing wavefunctions look promising 

- non-perturbative character of pfaffians (certain diagrams summed
to infinity) - long-range/macroscopic correlations in supercond.

- fermion nodes: another example of importance of quantum
geometry (field theory) and topology for electronic structure
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More developments: coupling of QMC with ab initio 
molecular dynamics -> QMC/MD !

- so far QMC used only for static, state-by-state calculations

- Car-Parrinello MD: - ions evolve according to classic EOM
- electrons with Density Functional Theory

Typical displacement of                      Typical displacement of an e-
an ion in one MD step                                 in one DMC step

10-3 to  10-4  a.u.                                     10-1 to  10-2  a.u.

Key idea: QMC walkers are fast, couple the evolution of ions 
with the evolution of the wavefunction (factor 50 in efficiency!) 



First calculations with QMC/MD method 
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H2 vibration: total and electronic energies in VMC and 
DMC



Dynamical dissociation of H2O molecule:
QMC/MD vs Car-Parrinello AIMD
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Grossman & Mitas, PRL, 94, 056403 ('05)



QMC  as an alternative for electronic structure

- focus on efficient description many-body effects, put the many-body
effects where they belongs: to the wavefunction (new wave function 
was/is always a milestone: Hartree-Fock,  BCS,  Laughlin...)

- input from other (CI,CC, ect) correlated wave function methods
very important: efficiency!!! 

- one still has to do the physics/chemistry: which types of correlations, 
symmetries, phases, . . ., the fundamental and fun part!

- but: tedious integrals, averaging, etc, left to machines,
gives a good use of parallelism, scales N^(1-3), robust, flexible

- often the most accurate method available: benchmarks

- opens new perspectives and science on many-body quantum 
phenomena
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QMC: only an accurate method or a 
paradigm shift ?

- in many cases it is more efficient to carry out the many-particle 
calculations than to (re)design a better mean-field

- let the machine to worry about integrals etc ($/cycle decreasing
exponentially in time)

- combination of analytical insights, reliable mean-fields and stochastic
techniques a key for getting high accuracy solutions of Schr. eq. 

- in working with wave functions one is closiest to the many-body 
physics and understanding  (fundamental point), the most efficient
in capturing correlation effects

- history of high accuracy benchmark/reference calculations and the 
only correlated wave function method which works also for solids

Lubos_Mitas@ncsu.edu



Lubos_Mitas@ncsu.edu

Current status of our QMC code
Qwalk (“Quantum Walk”)

- molecules and solids (3D periodicity), 1D rings other systems
(effective interactions etc, model systems etc)

- any basis (gaussian, Slater, PW, numerical, etc) or combination

- plethora of correlated wavefunctions (CI, development of pfaffian
libraries)

- variety of methods (variational, fixed-node DMC, optimizations, etc)

- current, new version of the code, C++, 50,000 lines: main
author Lucas K. Wagner, soon to be GPL released

- interfaces and converters to GAMESS, CRYSTAL (ABINIT, 
Gaussian in progress, NWChem ...) 
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Suggestions to NWChem developers:
collaborate with us on groundbreaking and 

win-win projects!
- QMC needs complete info about wave functions: beyond MOs,
determinants, CI coefficients, CSF determinants and coeffs, ...  

- we need very nimble tools for both design and analysis of various
correlated wavefunctions (eg, only these excitations into these
particular states while keeping the density constant);
nonorthogonal basis, each CSF with different orbitals: could lead 
to several breakthroughs in  compactness of wave functions;

- CI-like calculations of solids nonexistent: would be a breakthrough!
with QMC even modest size CI wave functions could be extermely
important (eg, key excitations in high-Tc compounds)

- new direction: optimization of pairing wave functions and beyond



Merci.  C'est  fini ...
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First try: MD/DFT trajectories, energies from DMC
Excited state evolution for hot silane molecule, water 

heat of vaporization 

Done also for larger systems, up to 32 water molecules:
heat of vaporization of 6.1 kcal/mol vs. DFT of 9 kcal/mol,
dynamical and T>0 quantity!

Optical Gap vs Time
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