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Science Opportunities
• The chemical industry represents 10% of all U.S. manufacturing, employing more than 

one million Americans. 

• These fields require petascale computing coordinated with experimental programs for 
significant innovation

• Clean energy innovations for automobiles and industry (catalysis, fuel cells, combustion). 
– Catalysts design is presently a misnomer … it is an Edisonian process
– Only theory+advanced computing can enable rational design 
– Catalytic processes are directly involved in the synthesis of 20% of all industrial products. 

• Molecular models for biological processes (protein and membrane function).  
– Modeling excited electronic states in photochemical systems and averaging over dynamics of the 

macromolecular structure potentially over very long timescales.

• Heavy element chemistry for advanced fuel cycles and environmental restoration.  
– These are special responsibilities of the DOE and petascale chemistry can replace many 

expensive experiments, and shorten timescales from decades to years. 

• Dynamics of atoms and molecules interacting with electrons and powerful laser fields. 
– These are fundamental and defining challenges in physics and chemistry for the 21st century, and 

have been seeking for a solution for more than 50 years. 
– All major advances in this field are a result of new computational capabilities



Computational catalysis
• Currently allocated 5+M hours between NCCS, 

NERSC, EMSL
– Need a sustained 10-100x increase

• Approach
– Large systems accurately described with modern

hybrid and meta DFT functionals
• Chemistry codes have the advantage here
• Full petascale simulation only for the largest runs

– Higher-accuracy necessary for quantitative rates 
and for calibration on smaller systems

• Many-body methods – demonstrated scaling to 10K 
processors and predicted to go to 100+K

• 75% of peak speed on EMSL HP cluster 1700 cpu
• Outcomes

– Rational design of novel catalyst(s)
– Future savings of $B in various industries
– Cleaner energy sources

Mavrikakis, Wisconsin.
H2 dissociation path on a 
bimetallic NSA surface.



The role of simulation in heavy element 
chemistry for advanced fuel cycles

• Molecular-scale knowledge is vital to enable the 
rational design of new/enhanced agents

– Reduced cost & risk with increased efficiency
– Current experimental approach can generate 

only a fraction of required data over many years
• The rest are guesstimated.

– We can compute much of this
• Need higher precision than currently feasible

– Combinatorial methods use thermodynamics for 
screening, but this is not reliable enough

• Approach
– Mixed MM/QM Gibbs-free energy computations of 

partition coefficients
– Simulation of select liquid-liquid, gas-gas interfaces 
– Accurate thermo-chemistry and spectroscopy

• Many-body methods incorporating relativistic effects 
• Outcomes

– Design of new separation chemistries on a timescale 
relevant to engineering requirements (months to years 
rather than decades)

B. Hay, EMSP project 73759



Computing now …

• The death of sequential computing

• Does anyone in the room still have a 
single cpu desktop machine?

• Laptop?

• Cell phone?



Computing in 2022 - I

• Looking back from 2007 to 1992
– About 500x increase in desktop performance

• 100MHz to 2x2 3GHz Core2
• 30x from clock, 8x from parallelism

– About 2500x increase supercomputer speed
• 100GF to 250TF
• 30x from clock, 40x from parallelism



Computing in 2022 - II

• Looking forward to 2022
– Expect same performance increases
– Almost entirely from increased parallelism
– Custom devices with much higher speed
– Memory and I/O hierarchy much deeper

– 20K * 2500  = 500M “processors”



Parallel scalability of NWChem - I

• Typical parallel efficiency of current largest 
jobs running on circa 1K processors
– DFT – 50% ?
– CCSD(T) - 80% ?

• Assume Amdahl’s law 
– Severe assumption
– DFT r=.001
– CCSD(T) r=0.00025 

• Efficiency on 10K cpu
– DFT 9%, CCSD(T) 29%                       
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Parallel scalability of NWChem - II

• Actual results running on 10K processors



Parallel scalability of NWChem - III

• Actual results running on 100K processors



Issues
• Eliminate gulf between theoretical 

innovation in small groups and realization 
on high-end computers

• Eliminate the semantic gap so that 
efficient parallel code is no harder than 
doing the math

• Software architecture and programming 
models for 2022

• Becoming a real community code
• Feasibility, support and maintenance



The way forward demands a 
change in paradigm

- by us chemists, the funding agencies, and 
the supercomputer centers

• A communal effort recognizing the increased 
cost and complexity of code development for 
modern theory at the petascale

• Re-emphasizing basic and advanced theory 
and computational skills in undergraduate 
and graduate education



An analogy:
Experimental End Stations at SNS

PROTONSPROTONS

Engineering 
Diffractometer – BL 9
Engineering 
Diffractometer – BL 9

Areas for User and 
Instrument Support
Areas for User and 
Instrument Support

SANS – BL 6SANS – BL 6

Cold Neutron Chopper  
Spectrometer – BL 5
Cold Neutron Chopper  
Spectrometer – BL 5

Magnetism – BL 4a 
Liquids – BL 4b 
Reflectometers

Magnetism – BL 4a 
Liquids – BL 4b 
Reflectometers

High Pressure 
Diffractometer – BL 3
High Pressure 
Diffractometer – BL 3

Backscattering 
Spectrometer – BL  2
Backscattering 
Spectrometer – BL  2 Disordered Materials 

Diffractometer – BL 1b
Disordered Materials 
Diffractometer – BL 1b Wide Angle Chopper  

Spectrometer – BL 18
Wide Angle Chopper  
Spectrometer – BL 18

High Resolution Chopper  
Spectrometer – BL 17
High Resolution Chopper  
Spectrometer – BL 17

Single Crystal 
Diffractometer – BL 12
Single Crystal 
Diffractometer – BL 12

Fundamental Physics 
Beamline – BL 13
Fundamental Physics 
Beamline – BL 13

Powder 
Diffractometer – BL 11a
Powder 
Diffractometer – BL 11a



Definition:
Computational End Station

NLCF deploys a fundamentally new approach for long-term engagement of research 
communities modeled on the “end station” concept through which major experimental 

facilities provide specialized instruments to specific user groups

End Station defined by three characteristics:

National Problem Scientific team Application suite

Addresses
problems that are

of national importance
(e.g., nanotech)

Scientific team 
willing to create

and maintain
end station

Suite of scientific 
codes in area tuned 
to NLCF resources

1 2 3



Molecular Science Software ProjectMolecular Science Software Project
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Computational Chemistry Endstation
Open, international collaboration: 8 universities & 5 national labs

• Led out of UT/ORNL
• Focus

– Actinides, Aerosols, Catalysis
• ORNL Cray XT3, ANL BG/L
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Capabilties:
• Chemically accurate thermochemistry

• Many-body methods required
• Mixed QM/QM/MM dynamics

• Accurate free-energy integration
• Simulation of extended interfaces

• Families of relativistic methods

Scaling of MADNESS 64-4096 cpu on XT3

NWChem:  Largest CCSD(T) calculation 
- Pollack, PNNL/EMSL, 2005.
- 1960 processor Itanium2 cluster
- 1468 basis functions (aug-cc-pVQZ) 
- Perturbative triples (T) 

- 23 hours on 1400 processors
- 75% of peak = 6.3 TFlops. 



Trends in Chemistry Codes - I
• All scalable codes use one-sided communication in 

various forms
– Ease of programming; increased scalability

• QM/MM, multi-scale methods, direct dynamics, …
– Multi-physics methods present scalability challenges 

• Multi-level methods (FMM, multi-resolution, multi-
grid, mixed-bases) in both space and time
– A path to (near) linear or optimal scaling without 

sacrificing accuracy
– Fully numerical real space methods

• Gaussian bases becoming attractive alternative to 
plane waves at low/medium precision? (Hütter)



Global Arrays 
• Shared-memory-like model

– Fast local access
– NUMA aware and easy to use
– MIMD and data-parallel modes
– Inter-operates with MPI, …

• BLAS and linear algebra interface
• Ported to major parallel machines

– IBM, Cray, SGI, clusters,...
• Originated in an HPCC project
• Used by most major chemistry 

codes, financial futures forecasting, 
astrophysics, computer graphics

• Supported by DOE 

• Jarek Nieplocha, PNNL

Single, shared data structure

Physically distributed data

http://www.emsl.pnl.gov/docs/global/



local memory

Non-uniform memory access model of 
computation
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Trends in Chemistry Codes - II
• Multi-level parallelism

– An effective path for most applications to scale to 100K 
processors without vast effort

• Coarse grain over vibrational degrees of freedom in numerical 
hessian, or geometries in a surface scan or parameter study

• Conventional distributed memory within each subtask
• Fine grain parallelism within a few  processor SMP (multi-threads, 

OpenMP, parallel BLAS, …)

– Efficient exploitation of fine grain parallelism is a major 
concern on future architectures

• MADNESS side steps some of these issues
• Community effort to increase interoperability and 

leverage new capabilities between codes
– CCA being adopted



Synthesis of High Performance Algorithms 
for Electronic Structure Calculations

http://www.cis.ohio-state.edu/~gb/TCE

• Collaboration between DOE/SciDAC, NSF/ITR and ORNL/LDRD 
• Objective: develop a high level programming tool that translates many-body 

quantum theory into efficient massively parallel codes.  This is anticipated to 
revolutionize the rate of progress in this field by eliminating man-years of 
programming effort. 

• NSF Project: 
• Sadayappan (PI), Baumgartner, Cociorva, Pitzer (OSU) 

Bernholdt, Harrison (unfunded) (ORNL)
Ramanujam (LSU)
Nooijen (Waterloo)

• DOE SciDAC: Harrison (PI), Hirata (PNNL)
• DOE ORNL/LDRD: Bernholdt (PI, 2002-3)
• Other SciDAC projects adopting this tool: Piecuch, Gordon
• Also being applied to nuclear physics (Bernholdt and Dean)



CCSD Doubles Equation
hbar[a,b,i,j] == sum[f[b,c]*t[i,j,a,c],{c}] -sum[f[k,c]*t[k,b]*t[i,j,a,c],{k,c}] +sum[f[a,c]*t[i,j,c,b],{c}] -sum[f[k,c]*t[k,a]*t[i,j,c,b],{k,c}] 

-sum[f[k,j]*t[i,k,a,b],{k}] -sum[f[k,c]*t[j,c]*t[i,k,a,b],{k,c}] -sum[f[k,i]*t[j,k,b,a],{k}] -sum[f[k,c]*t[i,c]*t[j,k,b,a],{k,c}] 
+sum[t[i,c]*t[j,d]*v[a,b,c,d],{c,d}] +sum[t[i,j,c,d]*v[a,b,c,d],{c,d}] +sum[t[j,c]*v[a,b,i,c],{c}] -sum[t[k,b]*v[a,k,i,j],{k}] 
+sum[t[i,c]*v[b,a,j,c],{c}] -sum[t[k,a]*v[b,k,j,i],{k}] -sum[t[k,d]*t[i,j,c,b]*v[k,a,c,d],{k,c,d}] -
sum[t[i,c]*t[j,k,b,d]*v[k,a,c,d],{k,c,d}] -sum[t[j,c]*t[k,b]*v[k,a,c,i],{k,c}] +2*sum[t[j,k,b,c]*v[k,a,c,i],{k,c}] -
sum[t[j,k,c,b]*v[k,a,c,i],{k,c}] -sum[t[i,c]*t[j,d]*t[k,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[k,d]*t[i,j,c,b]*v[k,a,d,c],{k,c,d}] -
sum[t[k,b]*t[i,j,c,d]*v[k,a,d,c],{k,c,d}] -sum[t[j,d]*t[i,k,c,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[i,c]*t[j,k,b,d]*v[k,a,d,c],{k,c,d}] -
sum[t[i,c]*t[j,k,d,b]*v[k,a,d,c],{k,c,d}] -sum[t[j,k,b,c]*v[k,a,i,c],{k,c}] -sum[t[i,c]*t[k,b]*v[k,a,j,c],{k,c}] -
sum[t[i,k,c,b]*v[k,a,j,c],{k,c}] -sum[t[i,c]*t[j,d]*t[k,a]*v[k,b,c,d],{k,c,d}] -sum[t[k,d]*t[i,j,a,c]*v[k,b,c,d],{k,c,d}] -
sum[t[k,a]*t[i,j,c,d]*v[k,b,c,d],{k,c,d}] +2*sum[t[j,d]*t[i,k,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[j,d]*t[i,k,c,a]*v[k,b,c,d],{k,c,d}] -
sum[t[i,c]*t[j,k,d,a]*v[k,b,c,d],{k,c,d}] -sum[t[i,c]*t[k,a]*v[k,b,c,j],{k,c}] +2*sum[t[i,k,a,c]*v[k,b,c,j],{k,c}] -
sum[t[i,k,c,a]*v[k,b,c,j],{k,c}] +2*sum[t[k,d]*t[i,j,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,d]*t[i,k,a,c]*v[k,b,d,c],{k,c,d}] -
sum[t[j,c]*t[k,a]*v[k,b,i,c],{k,c}] -sum[t[j,k,c,a]*v[k,b,i,c],{k,c}] -sum[t[i,k,a,c]*v[k,b,j,c],{k,c}] 
+sum[t[i,c]*t[j,d]*t[k,a]*t[l,b]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[k,l,c,d],{k,l,c,d}] -
2*sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[k,a]*t[l,b]*t[i,j,c,d]*v[k,l,c,d],{k,l,c,d}] -
2*sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[j,d]*t[l,b]*t[i,k,c,a]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,c]*t[l,b]*t[j,k,d,a]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,c,d],{k,l,c,d}] +4*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}] -
2*sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,c,d],{k,l,c,d}] -
2*sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,d,b]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[j,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,j,c,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}] -
2*sum[t[i,j,c,b]*t[k,l,a,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,j,a,c]*t[k,l,b,d]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[j,c]*t[k,b]*t[l,a]*v[k,l,c,i],{k,l,c}] +sum[t[l,c]*t[j,k,b,a]*v[k,l,c,i],{k,l,c}] -2*sum[t[l,a]*t[j,k,b,c]*v[k,l,c,i],{k,l,c}] 
+sum[t[l,a]*t[j,k,c,b]*v[k,l,c,i],{k,l,c}] -2*sum[t[k,c]*t[j,l,b,a]*v[k,l,c,i],{k,l,c}] +sum[t[k,a]*t[j,l,b,c]*v[k,l,c,i],{k,l,c}] 
+sum[t[k,b]*t[j,l,c,a]*v[k,l,c,i],{k,l,c}] +sum[t[j,c]*t[l,k,a,b]*v[k,l,c,i],{k,l,c}] +sum[t[i,c]*t[k,a]*t[l,b]*v[k,l,c,j],{k,l,c}] 
+sum[t[l,c]*t[i,k,a,b]*v[k,l,c,j],{k,l,c}] -2*sum[t[l,b]*t[i,k,a,c]*v[k,l,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,c,a]*v[k,l,c,j],{k,l,c}] 
+sum[t[i,c]*t[k,l,a,b]*v[k,l,c,j],{k,l,c}] +sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,d,c],{k,l,c,d}] 
+sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,d,c],{k,l,c,d}] +sum[t[j,d]*t[l,a]*t[i,k,c,b]*v[k,l,d,c],{k,l,c,d}] -
2*sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,d,c],{k,l,c,d}] -2*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] 
+sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,d,c],{k,l,c,d}] 
+sum[t[i,k,c,b]*t[j,l,d,a]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[k,a]*t[l,b]*v[k,l,i,j],{k,l}] 
+sum[t[k,l,a,b]*v[k,l,i,j],{k,l}] +sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[l,k,c,d],{k,l,c,d}] +sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[l,k,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[l,k,c,d],{k,l,c,d}] -2*sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[l,k,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[l,a]*t[j,k,d,b]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,c,b]*t[k,l,a,d]*v[l,k,c,d],{k,l,c,d}] 
+sum[t[i,j,a,c]*t[k,l,b,d]*v[l,k,c,d],{k,l,c,d}] -2*sum[t[l,c]*t[i,k,a,b]*v[l,k,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,a,c]*v[l,k,c,j],{k,l,c}] 
+sum[t[l,a]*t[i,k,c,b]*v[l,k,c,j],{k,l,c}] +v[a,b,i,j]



range V = 3000;
range O = 100;

index a,b,c,d,e,f : V;
index i,j,k,l : O;

mlimit = 100GB;

procedure P(in A[V,V,O,O], in B[V,V,V,O], 
in C[V,V,O,O], in D[V,V,V,O], 
out S[V,V,O,O])=

begin
S[a,b,i,j] == sum[ A[a,c,i,k] * B[b,e,f,l] 

* C[d,f,j,k] * D[c,d,e,l],
{c,e,f,k,l}];

end 

Tensor Contraction Engine (TCE)
• High-level domain-specific language for a 

class of problems in quantum 
chemistry/physics based on contraction of 
large multi-dimensional tensors

• Specialized optimizing compiler
– Produces F77+GA code, linked to runtime libs

∑=
cefkl

cdeldfjkbeflacikabij DCBAS





Multiresolution Adaptive 
Numerical Scientific Simulation 

Ariana Beste1, George I. Fann1, Robert J. Harrison1,2, 
Rebecca Hartman-Baker1, Shinichiro Sugiki1

1Oak Ridge National Laboratory
2University of Tennessee, Knoxville

In collaboration with 

Gregory Beylkin4, Fernando Perez4, Lucas Monzon4, 
Martin Mohlenkamp5 and others

4University of Colorado
5Ohio University

harrisonrj@ornl.gov



Multiresolution chemistry objectives

• Complete elimination of the basis error
– One-electron models (e.g., HF, DFT)
– Pair models (e.g., MP2, CCSD, …)

• Correct scaling of cost with system size
• General approach

– Readily accessible by students and researchers
– Higher level of composition 
– Direct computation of chemical energy differences

• New computational approaches 
• Fast algorithms with guaranteed precision



Essential techniques for fast 
computation

• Multiresolution

• Low-separation 
rank

• Low-operator 
rank
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How to “think” multiresolution
• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer 
resolution grids, …

• Telescoping series

– Instead of using the most accurate representation, use the 
difference between successive approximations

– Representation on V0 small/dense; differences sparse
– Computationally efficient; many possible insights

0 1 2 nV V V V⊂ ⊂ ⊂ ⊂L

0 1 0 2 1 1( ) ( ) ( )n n nV V V V V V V V −= + − + − + + −L





Integral Formulation
• Solving the integral equation

– Eliminates the derivative operator and related “issues”
– Converges as fixed point iteration with no preconditioner
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Such Green’s Functions (bound state Helmholtz, Poisson) can be rapidly
and accurately applied with a single, sparse matrix vector product.



Bases
• Polynomials

– The good
• Familiar with much knowledge to draw upon
• Good for discontinuities located at nodes

– The bad
• Over-sampling circa 3d

• Bad condition number, not band limited
• Approximate prolate spheroidal functions

– The good
• Asymptotically over sample by only circa 1.2d

• Strong band limit 
– The bad

• Unfamiliar with many holes in current knowledge
• Not yet fully tested in adaptive scheme
• Multiresolution just now being demonstrated



Current applications

• DFT & HF
– Energies, gradients, excitation energies, non-

linear optical properties, …
– Catalysis, nano-scale chemistry

• MCSCF
– Time evolution of few-electron systems

• 6D prototype
– Exact solution of 2-electron problem without 

use of any special symmetry



High-level composition using 
functions and operators

• Conventional quant. chem. uses explicitly 
indexed sparse arrays of matrix elements
– Complex, tedious and error prone

• Python classes for Function and Operator
– in 1,2,3,6 and general dimensions
– wide range of operations 
Hpsi = -0.5*Delsq*psi+ V*psi
J = Coulomb.apply(rho)

• All with guaranteed speed and precision
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New MADNESS solver
• Total rewrite in C++ 

– Three levels of parallelism targeting massively 
parallel computer using multi-processor nodes

– In anticipation of highly-threaded processors
– Ideally targets low latency AM+MPI+threads
– Portable implementation polling+MPI+threads

• Core math functionality is now running
– 3D functions, real and complex (1-6D 

functions will be added this FYI)
– Scaling demonstrated up to 4096 processors –

designed for 1+M.



1-D Example Sub-Tree Parallelism

0

1

2

3

4

5

6

Both sub-trees can be done in parallel. 
In 3-D nodes split into 8 children … in 6-D there are 64 children



Distributed-memory Cilk-like model
Parameter: 

MPI rank
probe()
set()
get()

Compress(tree,result):
Parameter left, right
if (tree.left) Compress(tree.left, left)
if (tree.right) Compress(tree.right, right)
AddTask(Op, left, right, result)

WaitTasks()

Task:
Input parameters
Output parameters
probe()
run()

Benefits:    Most receives pre-posted greatly increasing scalability
Communication latency & transfer time largely hidden
Much simpler composition than explicit message passing
Positions code to use “intelligent” runtimes with work stealing
Positions code for efficient use of multi-core chips



Abstraction overheads
• If you are careful you win

– Increased performance and productivity
– This is the lesson of Global Arrays, Charm++, …

• Modern C++ is just as fast as Fortran
– Templates, inlining, restrict qualifier
– And don’t forget the productivity of Python!

• Overhead of virtualization measured in nano-sec.
– Less than 80ns additional latency to create, execute and 

reap a new user-space thread
– Less than 30ns to switch between user-space threads
– ORNL Cray-XT3, 2.6 GHz opteron, Catamount,

my fibers library



What’s in it for the Users?
Looking Toward the HPCS 

Languages and Beyond

David E. Bernholdt, Wael R. 
Elwasif, and Robert J. Harrison
Oak Ridge National Laboratory

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Dept. of Energy under contract DE-
AC-05-00OR22725.



The HPCS Languages
• Chapel

– Cray
• Fortress

– Sun Microsystems
• X10

– IBM
• ARDA/DARPA/DOE sponsored language 

evaluation project
– Lusk (PI), Yellick, Mellor-Crummey, Gropp, Harrison

• Thanks to vendor groups for spending several 
days each with us to improve our understanding 
of their languages!



A Revolution in the Making?

• HPCS languages provide significant 
advances in approach and capability 
compared to traditional scientific 
computing languages
– More alike than different from user perspective

• Major differences from PGAS languages
• High-level (sequential) language features
• Integrated productivity features
• Integrated concurrency



The Sequential Languages

• Rich array data types
• Strongly typed but with type inference
• Object oriented model

– Distinction between reference and value types
• Generic programming 
• Strongly library oriented
• Extensible language model (more later)



Productivity Features
• Index sets/regions for arrays, etc.

– “Array language” (Chapel, X10)
• Safe(r) and more powerful language 

constructs
– Atomic sections vs locks
– Sync variables and futures 
– Clocks (X10)

• Type inference
• Leverage IDE environments
• Units and dimensions (Fortress)
• Component management, testing (Fortress)
• Math/science-based presentation (Fortress)



Concurrency
• Not SPMD!

– Initially single thread of control, parallelism through language
constructs

• True global view of memory, one-sided access model
• Support for both task and data parallelism
• “Threads” grouped by “memory locality”

– Explicitly two level (Chapel, X10), or hierarchical (Fortress)
• Rich distributed array capability

– Programmer-provided distribution details
• Parallel loops
• “Generator” concept used widely for loops, 

distributions
• Futures

– Local and remote



Something for the Tinkerer

• Object orientation, generic programming, and 
programmer-written data distributions

• All three languages also intend to offer an 
unprecedented flexibility to extend the language
– Libraries
– Compiler optimizations and specializations
– Language syntax (Fortress, X10)

• Extremely powerful tools to support high-level 
domain-specific abstractions



MADNESS Example – III
• X10, 1-D equivalent (ran in parallel, in one place)

void refine(final int n, final int l, final int nmax) {
left = new Tree(this,2.0*l);
right =new Tree(this, 2.0*l+1);
final nullable Tree ll = left, rr=right;
if (n < (nmax-1)) {

async {ll.refine(n+1,2*l,nmax);}
async { rr.refine(n+1,2*l+1,nmax);}

}
if (n < nmax) data = null; 

}
• Issues for all of the languages

– How to control (or relinquish control) of the initial data placement?
• One or the other is cumbersome in all of the languages

– How to express dynamic load balancing between places?
• Only Fortress seems to provide this



Summary

• Chemists, driven by necessity, are uniting 
coding efforts

• Advanced numerical methods
– Potentially algorithmically faster & more accurate
– Higher-level composition of applications
– Well suited to anticipated architectures

• Other parallel programming paradigms
– Can be portable, efficient and vastly more 

productive than MPI



Electron correlation
• All defects in the mean-field model are ascribed to 

electron correlation
• Consideration of singularities in the Hamiltonian imply 

that for a two-electron singlet atom (e.g., He)

• Include the inter-electron distance in the wavefunction
– E.g., Hylleraas 1938 wavefunction for He

– Potentially very accurate, but not systematically improvable, and 
(until recently) not computationally feasible for many-electron 
systems
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Conventional approach
• The two-electron wave function is expanded as a 

product of one-particle functions (orbitals)

• Can prove for atoms, that if saturate the atomic 
basis up to some angular momentum L, then

• Correlation consistent basis sets (Dunning) are 
currently the best choice – cost is 

• Explicitly correlated wave functions yields
• Fully numerical promises  
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