
One-sided atomic reduction, also known as the 
accumulate operation, combines atomically a 
content of the local buffer with data at remote 
memory location. This operation has been 
included in the MPI-2 standard a, 
MPI_Accumulate. The current paper discusses two 
strategies for implementing one-sided atomic 
reduction called owner-computes and caller-
computes. Performance of these two schemes has 
been investigated on the HP Alphaserver SC45 
and HP zx-2600 clusters both equipped with the 
Quadrics Elan-3 network.  

1. Introduction 
Traditionally, user-level message-passing libraries 
(e.g., MPI, PVM) offered only a limited set of 
operations that involved computation in addition to 
communication. They are collective operations 
such as reductions (e.g., MPI_Reduce, 
MPI_Allreduce) that combine the data in the user 
communication buffer across the set of tasks 
participating in the operation. These operations are 
often used in scientific computing [1] to, for 
example, determine convergence criteria for the 
iterative methods for solving linear equations or 
compute vector dot products in the conjugate 
gradient solver [2]. Consecutively, multiple 
research efforts have been pursued to optimize 
performance of these important operations on 
modern networks. A wide range of implementation 
protocols and techniques such as shared memory, 
RMA (remote memory access), and the 
programmable network interface card (NIC) has 
been explored e.g., [2-5]. 

The most recent extensions to the MPI standard [6] 
define atomic reductions, one of the one-sided 
operations available in MPI-2. In MPI-2, atomic 
reductions are supported through the 
MPI_Accumulate operation. This noncollective 
one-sided operation in a single interface combines 
communication and computations. It allows the 
programmer to update atomically remote memory 
by combining the content of the local 
communication buffer with the remote memory 
buffer. The primary difference between atomic 

one-sided and collective reductions is that in the 
first case only one processor is involved in the 
operation and the operation is atomic, which 
allows multiple processors to independently 
update the same remote memory location without 
explicit synchronization that otherwise would be 
required to ensure consistency of the result. The 
sample application domain that motivated MPI 
Forum to add atomic reduction to the MPI-2 
standard has been electronic structure 
computational chemistry with multiple algorithms 
that relied on the accumulate operation as available 
in the Global Arrays toolkit [7].  

The current contribution represents the first paper 
with the primary focus on the implementation of 
the atomic reduction operation1.  We are 
describing two different implementation strategies 
for atomic reductions and presenting performance 
evaluation of these strategies—standalone as well 
as in the context of two electronic structure 
algorithms that make heavy use of the floating-
point atomic reduction. These two strategies are 
called Caller-Computes and Owner-Computes, 
corresponding to the processor that executes the 
computations involved in the atomic one-sided 
reduction operation. The two implementation 
strategies we describe are applicable to modern 
networks—for example, Infiniband that offers 
sufficient functionality in the Mellanox VAPI 
layer to implement both strategies.  However, in 
the current study we are using the Quadrics 
QsNET-I (Elan-3) network on Linux/Itanium and 
True64/Alpha platforms.  The Quadrics network 
has been quite popular for building high-end 
clusters, and several large systems on the TOP500 
List rely on this network.  

The numerical experiments described in the paper 
indicate that for the same network, both strategies 
have their merits and deliver different levels of 
performance depending on the platform used. The 

                                                
1An implementation of atomic reduction on the 
NEC SX is mentioned in [8] but no performance 
results or application experience are reported.  
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Owner Computes scheme delivers superior 
performance on Linux outperforming our 
implementation of the Caller Computes scheme, 
and the Quadrics implementation of 
MPI_Accumulate. For example, for message size 
of 720KB the bandwidth was measured of 
181MB/s, 99.8MB/s, and 97.8 MB/s for the three 
implementations correspondingly. Application 
performance reported on the Linux cluster shows 
that the implementation efficiency of the atomic 
reduction operation has a substantial impact on the 
execution time of the two computational chemistry 
algorithms that rely on this operation. For 
example, on 24 processors the Owner Computes 
scheme produces up to 45.5% and 33.9% 
reduction of the wall-clock as comparing to the 
Caller Computes scheme in the Hartree-Fock and 
the DFT Hessian calculation, respectively. 

This paper is organized as follows. Section 2 
describes atomic reduction operations and 
provides details of the two implementation 
strategies. Section 3 presents our microbenchmark 
performance study. Section 4 includes application 
experience. Finally, conclusions and future work 
are outlined in Section 5. 

2 Technical Approach 
The atomic reduction operation applies operator 
OP to atomically combine the content of local (B) 
and remote (A) arrays and place the result in the 
remote buffer in place of A:  

Anew = OP(A, B) 

Examples of operator OP include SUM, scaled 
SUM (see _AXPY in BLAS), OR, or REPLACE. 
Ignoring arithmetic precision (round-off error) for 
commutative operators, the operation provides an 
opportunity for implementing mutual exclusion 
with variable granularity (element-wise, array 
section, or even entire array). 

We developed two implementation schemes 
targeting the functionality supported by modern 
high-performance networks such as Quadrics or 
Infiniband. They are called Caller-Computes and 
Owner-Computes, corresponding to the processor 
that executes the required computations in this 
operation. As Figure 1 indicates, in the Caller-
Computes scheme the processor involved in the 
call performs the computation. To ensure mutual 
atomicity of the operation, first a lock is acquired 
to protect array A. Then array A is copied to a 

temporary location on the calling processor P02. 
After the result of the operation is computed, it is 
stored on the remote processor P1, thus 
overwriting the original value of A. Finally, the 
lock is released. By default, this scheme involves 
locking the entire array A. Finer-grain locking 
schemes are possible (parts of A) to increase 
concurrency of the operation in case of multiple 
processors targeting array A but at the cost of 
increased latency. 

Unlike the Caller-Computes scheme in which lock 
operations are required to work across the 
network, in the Owner-Computes scheme the 
scope of locks can be limited to the local node 
(e.g., pthread_mutex_lock) as shown in Figure 1. 
In this case, a copy of array B is sent by the caller 
to the owner of array A, i.e., processor P1. In this 
scheme, locking is required to ensure correctness 
of multithreaded implementation and could be 
avoided if only one thread is responsible for the 
computations. After the new value of A is 
computed, the lock is released. 

The Owner-Computes scheme is potentially the 
more efficient of the two because 1) the data 
crosses the network only once, and 2) the scope of 
the lock operation is limited to the cluster node 
where array A resides.  

2.1 Implementation Considerations 
In the current paper we are focusing on the 
Quadrics QsNET-I network as an example 
implementation platform for the atomic reduction 
operation. The QsNET-I Quadrics network consist 
of the Elan3 network interface cards and Elite 
switches [9, 10]. The Elan network interface cards 
are connected to hosts via 66MHz/64Bit PCI bus. 
Elan3 has 64 MB on-board SDRAM and a 
memory management unit (MMU). The system 
software is responsible for synchronizing the 
MMU table and doing the address translation. An 
Elite switch uses a full crossbar connection and 
supports wormhole routing. The minimal Quadrics 
network configuration consists of Elan3 QM-400 
network interface cards and at least one Elite 16 
switch. The network supports a transmission 
bandwidth of 400MB/s in each link direction. 
Elanlib is the low-level programming interface 
offered by Quadrics for both the QsNET-I and 
QsNET-II networks. It offers protected, user-level 
access to the network interfaces. The software 

                                                
2 For the REPLACE operator, the copy is not 
required. Instead, after locking, the content of A is 
overwritten by B and then the lock released. 



provides a global virtual address space 
programming model by logically integrating 
individual node’s address space. One node can use 
remote DMA to access a remote node’s memory 
space. Elanlib provides a general-purpose 
synchronization mechanism based on events stored 
in Elan memory. The completion of remote DMA 
operations can be reported through events.  

A practical implementation of the caller computes 
relies on the remote DMA operations, namely the 
get operation to copy the array from a remote 
processor to a local buffer and the put operation to 
transfer the result back to the remote processor, 
thus overwriting the original content of A. In 
addition, an atomic operation is required to ensure 
mutual exclusion. Most modern networks such as 
the Quadrics or Infiniband networks provide these 
capabilities. In particular, the atomic swap 
operation is available on Quadrics (shmem_swap) 
and in the Mellanox VAPI layer. In addition, 
Quadrics offers the elan_lock operation in its 
Elanlib communication library. This operation is 
implemented on the thread processor of the Elan-3 
adapter. In case of contention, the use of elan_lock 
reduces network traffic by eliminating repeated 
calls to the swap operation while waiting for the 
remote lock to be released. Quadrics as well as 
other high-performance networks (Myrinet, 
Infiniband) supports put and get operations 

(RDMA read and write). In case of Infiniband 
VAPI or Myricom GM, array A must be located in 
registered memory, whereas on Quadrics such a 
constraint is not imposed [11]. 

As noted earlier, the Owner-Computes scheme is 
potentially more efficient, thanks to the reduced 
volume of data transfers and the local scope of the 
lock operations. However, the actual 
implementation requires addressing flow control 
issues associated with the one-sided nature of the 
operation when sending a copy of B to the remote 
processor P1. Our implementation on Quadrics 
uses an extra Pthread thread and Quadrics Elanlib 
queue interface to implement the Owner-
Computes scheme. The Elanlib interface allows 
the scheme to post a number of receive buffers and 
then block in the receive operation 
(elan_queueWait), thus yielding the processor until 
a message arrives. At that point, an interrupt is 
generated and the thread blocked is awakened by 
the operating system. We found that the efficiency 
of generating interrupts is higher on Linux/IA64 
(12µs) than on True64 (54.5µs). This difference 
affects the performance of the Owner-Computes 
implementation on the two platforms, as described 
in Section 3. After acquiring a lock, the thread 
computes the result as shown in Figure 1. On the 
Elan-3 network, the queue messages can carry 
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Figure 1: High-level representation of the Caller-Computes and Owner-Computes schemes for 
implementing atomic reduction 

 



only very limited payload (~300 bytes), which 
corresponds to the size of the network packet. 
However, for larger messages this limitation can 
be addressed by sending only the data descriptor 
and then having the thread on the remote processor 
transfer the actual data (array B) using the elan_get 
operation. Our implementation is different from 
the implementation of MPI_Accumulate [8] on the 
NEC SX-5, which uses nonblocking point-to-point 
message passing with additional control message, 
and relies on the MPI progress engine for 
completion of the operation on the remote side. 

3. Experimental Evaluation 
Our primary platform in this work has been the HP 
cluster at Pacific Northwest National Laboratory 
based on the dual 1.5-Hz Intel Itanium-2 nodes 
running Linux kernel 2.4.20 with HP patches and 
using the Quadrics Elan-3 network. In general, the 
performance of Elan-3 with the HP ZX-1 chipset 
used in the rx-2600 server nodes of the cluster is 
not as good as on other systems with Intel chipsets. 
The system has been running the latest version of 
the Quadrics communication libraries for the Elan-
3 network (version 1.64), which included Elanlib 
and MPI. The Quadrics implementation of MPI 
included the MPI_Accumulate operation. Figure 2 
illustrates the performance of the two 
implementation schemes and compares them to 
performance of MPI_Accumulate, all for the SUM 

operator and the double float data type. The micro-
benchmarks were run using 1 processor per node. 
The performance results indicate that the Owner-
Computes scheme delivers the highest levels of 
performance. After crossing the message range 
corresponding to a single network packet size, the 
observed bandwidth drops due to switching the 
underlying protocol as described in Section 2.1. 
For medium and larger messages, the performance 
gain is contributed to the reduced volume of data 
transfer as compared to the other scheme (see 
Figure 1). The performance of MPI_Accumulate 
closely tracks the performance of the Caller-
Computes scheme, suggesting that a version of this 
algorithm is used internally by Quadrics.  

In addition, we ran the same test on the HP 
Alphaserver SC45 cluster at NASA Goddard that 
uses the same Quadrics network with the Elan-3 
adapter.  That cluster employs quad Alpha EV68 
processors on each node and runs True64 version 
5.1. The version of MPI available on this machine 
does not include MPI_Accumulate operation. The 
version of the Elanlib is also older (1.3) than the 
one available on the Linux/Itanium-2 system.  

The performance results are plotted as a function 
of the message size in Figure 3. Surprisingly, the 
performance characteristics of the two 
implementations vary between the True64 and 
Linux clusters despite both systems using the same 
network. On True64, until the message size 
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Figure 2: Performance of the two schemes compared to the performance of the Quadrics 
implementation of MPI_Accumulate on the Linux/Itanium-2 IA64 cluster 



reaches about 45 KB, the Caller-Computes scheme 
is faster. On Linux, the Owner-Computes scheme 
is the most competitive for all message sizes but a 
few data points between 300 bytes and 1.2 KB 
where performance is consistent with the other 
approach. In general, we attribute these differences 
to the better efficiency of the interrupt processing 
on Linux as compared to True64 and perhaps to 
some degree to internal improvements in the 
Elanlib implementation.  Figure 4 shows the 
relative performance of the Owner-Computes 

scheme as compared to the Caller-Computes 
scheme. For smaller messages on 
True64/Alpha cluster, the impact of interrupt 
processing on the bandwidth can be seen here. 
However, for sufficiently large message sizes 
(over 45KB), the cost of the interrupt 
processing is hidden by the gain from using 
Owner-Computes scheme.  
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Figure 3: Performance of the two schemes on the True64/Alpha cluster 

 

 
Figure 4: Relative performance of the Owner-Computes as compared to the Caller-Computes scheme 



4. Application Experience 
Floating-point sum reduction is a fundamental 
operation needed by distributed-data 
implementations of several electronic structure 
algorithms in computational chemistry. A typical 
example of an algorithm that uses this common 
computational kernel is the evaluation of the Fock 
matrix elements in a Hartree-Fock (HF) 
calculation [12,13] using a local basis set (also 
known as a "Fock build"); a very similar algorithm 
is the evaluation of the Kohn-Sham matrix 
elements in density functional (DFT) calculations 
[14]. These two theoretical approaches constitute 
the most used methods for studying electronic 
structure properties of molecular compounds. The 
primary output quantities of these methods are 
energy, energy gradients with respect to the 
displacement of the nuclei (term used for structural 
optimization), and energy second derivatives 
(quantities used for calculating vibrational 
frequencies and related properties).  

In Figure 5, we report the result of benchmark 
calculations of HF and DFT second derivatives as 
implemented in the computational chemistry code 
NWChem [15] on the Linux/Itanium-2 cluster. As 
mentioned above, the floating-point sum reduction 
is at the center of one of the main kernels used by 
this approach. More specifically, the parallel 
implementation of the Coupled Perturbed HF (and 
DFT) equation [16] in NWChem requires the use 
of this operation. Because the solution of the 
Coupled Perturbed HF and DFT equation is 
achieved by means of an iterative approach that 
requires multiple Fock builds, multiple series of 
the atomic reduction calls are executed. The 
message sizes range from approximately two 
hundred bytes up to several kilobytes. Therefore, 

the efficiency of this operation directly translates 
into improvement of the time to solution, as shown 
in Figure 4. On 24 processors, the Owner-
Computes scheme improved the wall-clock time 
by 45.5% in the Hartree-Fock calculation and by 
33.9% in the DFT Hessian calculation as 
compared to the Caller-Computes scheme. 

5. Conclusions and Future Work 
The papers discussed two methodologies for 
implementing atomic reduction on clusters 
equipped with high-performance networks. 
Although the Owner-Computes scheme is 
potentially more efficient due to the reduced 
amount of data movement, the higher cost of 
interrupt processing on True64 makes it less 
efficient for all but large messages. However on 
Linux, the Owner-Computes scheme was found to 
be more efficient in both the context of 
microbenchmarks as well as two applications that 
rely on the atomic reduction operation. 

The availability of increasingly powerful 
processors employed in the NICs makes it feasible 
to implement another scheme for the one-sided 
atomic reduction operation where computations 
would be performed on the NIC. We decided to 
leave the NIC Computes approach for a future 
work for three reasons.  First, the much better 
support for floating point operations on the host 
rather than the NIC makes this strategy appealing 
only for very small messages.  Second, the need to 
efficiently support the full range of message sizes 
would require a hybrid protocol in which small 
messages are handled by the NIC Computes 
strategy and larger messages by some other 
protocol, therefore complicating the 
implementation of mutual exclusion mechanisms 
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Figure 5: Performance (wall-clock time) of the DFT Hessian calculation (left) and Hartree-Fock (right) 
application benchmarks on the Linux/Itanium-2 cluster 

 



compatible between these protocols.  Finally, we 
are looking for an application that, unlike the two 
used in the current study, would rely on very short 
messages.   
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