
One-sided atomic reduction, also known as the
accumulate operation, combines atomically a
content of the local buffer with data at remote
memory location. This operation has been
included in the MPI-2 standard a,
MPI_Accumulate. The current paper discusses two
strategies for implementing one-sided atomic
reduction called owner-computes and caller-
computes. Performance of these two schemes has
been investigated on the HP Alphaserver SC45
and HP zx-2600 clusters both equipped with the
Quadrics Elan-3 network.

1. Introduction
Traditionally, user-level message-passing libraries
(e.g., MPI, PVM) offered only a limited set of
operations that involved computation in addition to
communication. They are collective operations
such as reductions (e.g., MPI_Reduce,
MPI_Allreduce) that combine the data in the user
communication buffer across the set of tasks
participating in the operation. These operations are
often used in scientific computing [1] to, for
example, determine convergence criteria for the
iterative methods for solving linear equations or
compute vector dot products in the conjugate
gradient solver [2]. Consecutively, multiple
research efforts have been pursued to optimize
performance of these important operations on
modern networks. A wide range of implementation
protocols and techniques such as shared memory,
RMA (remote memory access), and the
programmable network interface card (NIC) has
been explored e.g., [2-5].

The most recent extensions to the MPI standard [6]
define atomic reductions, one of the one-sided
operations available in MPI-2. In MPI-2, atomic
reductions are supported through the
MPI_Accumulate operation. This noncollective
one-sided operation in a single interface combines
communication and computations. It allows the
programmer to update atomically remote memory
by combining the content of the local
communication buffer with the remote memory
buffer. The primary difference between atomic

one-sided and collective reductions is that in the
first case only one processor is involved in the
operation and the operation is atomic, which
allows multiple processors to independently
update the same remote memory location without
explicit synchronization that otherwise would be
required to ensure consistency of the result. The
sample application domain that motivated MPI
Forum to add atomic reduction to the MPI-2
standard has been electronic structure
computational chemistry with multiple algorithms
that relied on the accumulate operation as available
in the Global Arrays toolkit [7].

The current contribution represents the first paper
with the primary focus on the implementation of
the atomic reduction operation1. We are
describing two different implementation strategies
for atomic reductions and presenting performance
evaluation of these strategies—standalone as well
as in the context of two electronic structure
algorithms that make heavy use of the floating-
point atomic reduction. These two strategies are
called Caller-Computes and Owner-Computes,
corresponding to the processor that executes the
computations involved in the atomic one-sided
reduction operation. The two implementation
strategies we describe are applicable to modern
networks—for example, Infiniband that offers
sufficient functionality in the Mellanox VAPI
layer to implement both strategies. However, in
the current study we are using the Quadrics
QsNET-I (Elan-3) network on Linux/Itanium and
True64/Alpha platforms. The Quadrics network
has been quite popular for building high-end
clusters, and several large systems on the TOP500
List rely on this network.

The numerical experiments described in the paper
indicate that for the same network, both strategies
have their merits and deliver different levels of
performance depending on the platform used. The

1An implementation of atomic reduction on the
NEC SX is mentioned in [8] but no performance
results or application experience are reported.

An Evaluation of Two Implementation Strategies for Optimizing
One-Sided Atomic Reduction

Jarek Nieplocha Vinod Tipparaju Edoardo Apra

Pacific Northwest National Laboratory

Owner Computes scheme delivers superior
performance on Linux outperforming our
implementation of the Caller Computes scheme,
and the Quadrics implementation of
MPI_Accumulate. For example, for message size
of 720KB the bandwidth was measured of
181MB/s, 99.8MB/s, and 97.8 MB/s for the three
implementations correspondingly. Application
performance reported on the Linux cluster shows
that the implementation efficiency of the atomic
reduction operation has a substantial impact on the
execution time of the two computational chemistry
algorithms that rely on this operation. For
example, on 24 processors the Owner Computes
scheme produces up to 45.5% and 33.9%
reduction of the wall-clock as comparing to the
Caller Computes scheme in the Hartree-Fock and
the DFT Hessian calculation, respectively.

This paper is organized as follows. Section 2
describes atomic reduction operations and
provides details of the two implementation
strategies. Section 3 presents our microbenchmark
performance study. Section 4 includes application
experience. Finally, conclusions and future work
are outlined in Section 5.

2 Technical Approach
The atomic reduction operation applies operator
OP to atomically combine the content of local (B)
and remote (A) arrays and place the result in the
remote buffer in place of A:

Anew = OP(A, B)

Examples of operator OP include SUM, scaled
SUM (see _AXPY in BLAS), OR, or REPLACE.
Ignoring arithmetic precision (round-off error) for
commutative operators, the operation provides an
opportunity for implementing mutual exclusion
with variable granularity (element-wise, array
section, or even entire array).

We developed two implementation schemes
targeting the functionality supported by modern
high-performance networks such as Quadrics or
Infiniband. They are called Caller-Computes and
Owner-Computes, corresponding to the processor
that executes the required computations in this
operation. As Figure 1 indicates, in the Caller-
Computes scheme the processor involved in the
call performs the computation. To ensure mutual
atomicity of the operation, first a lock is acquired
to protect array A. Then array A is copied to a

temporary location on the calling processor P02.
After the result of the operation is computed, it is
stored on the remote processor P1, thus
overwriting the original value of A. Finally, the
lock is released. By default, this scheme involves
locking the entire array A. Finer-grain locking
schemes are possible (parts of A) to increase
concurrency of the operation in case of multiple
processors targeting array A but at the cost of
increased latency.

Unlike the Caller-Computes scheme in which lock
operations are required to work across the
network, in the Owner-Computes scheme the
scope of locks can be limited to the local node
(e.g., pthread_mutex_lock) as shown in Figure 1.
In this case, a copy of array B is sent by the caller
to the owner of array A, i.e., processor P1. In this
scheme, locking is required to ensure correctness
of multithreaded implementation and could be
avoided if only one thread is responsible for the
computations. After the new value of A is
computed, the lock is released.

The Owner-Computes scheme is potentially the
more efficient of the two because 1) the data
crosses the network only once, and 2) the scope of
the lock operation is limited to the cluster node
where array A resides.

2.1 Implementation Considerations
In the current paper we are focusing on the
Quadrics QsNET-I network as an example
implementation platform for the atomic reduction
operation. The QsNET-I Quadrics network consist
of the Elan3 network interface cards and Elite
switches [9, 10]. The Elan network interface cards
are connected to hosts via 66MHz/64Bit PCI bus.
Elan3 has 64 MB on-board SDRAM and a
memory management unit (MMU). The system
software is responsible for synchronizing the
MMU table and doing the address translation. An
Elite switch uses a full crossbar connection and
supports wormhole routing. The minimal Quadrics
network configuration consists of Elan3 QM-400
network interface cards and at least one Elite 16
switch. The network supports a transmission
bandwidth of 400MB/s in each link direction.
Elanlib is the low-level programming interface
offered by Quadrics for both the QsNET-I and
QsNET-II networks. It offers protected, user-level
access to the network interfaces. The software

2 For the REPLACE operator, the copy is not
required. Instead, after locking, the content of A is
overwritten by B and then the lock released.

provides a global virtual address space
programming model by logically integrating
individual node’s address space. One node can use
remote DMA to access a remote node’s memory
space. Elanlib provides a general-purpose
synchronization mechanism based on events stored
in Elan memory. The completion of remote DMA
operations can be reported through events.

A practical implementation of the caller computes
relies on the remote DMA operations, namely the
get operation to copy the array from a remote
processor to a local buffer and the put operation to
transfer the result back to the remote processor,
thus overwriting the original content of A. In
addition, an atomic operation is required to ensure
mutual exclusion. Most modern networks such as
the Quadrics or Infiniband networks provide these
capabilities. In particular, the atomic swap
operation is available on Quadrics (shmem_swap)
and in the Mellanox VAPI layer. In addition,
Quadrics offers the elan_lock operation in its
Elanlib communication library. This operation is
implemented on the thread processor of the Elan-3
adapter. In case of contention, the use of elan_lock
reduces network traffic by eliminating repeated
calls to the swap operation while waiting for the
remote lock to be released. Quadrics as well as
other high-performance networks (Myrinet,
Infiniband) supports put and get operations

(RDMA read and write). In case of Infiniband
VAPI or Myricom GM, array A must be located in
registered memory, whereas on Quadrics such a
constraint is not imposed [11].

As noted earlier, the Owner-Computes scheme is
potentially more efficient, thanks to the reduced
volume of data transfers and the local scope of the
lock operations. However, the actual
implementation requires addressing flow control
issues associated with the one-sided nature of the
operation when sending a copy of B to the remote
processor P1. Our implementation on Quadrics
uses an extra Pthread thread and Quadrics Elanlib
queue interface to implement the Owner-
Computes scheme. The Elanlib interface allows
the scheme to post a number of receive buffers and
then block in the receive operation
(elan_queueWait), thus yielding the processor until
a message arrives. At that point, an interrupt is
generated and the thread blocked is awakened by
the operating system. We found that the efficiency
of generating interrupts is higher on Linux/IA64
(12µs) than on True64 (54.5µs). This difference
affects the performance of the Owner-Computes
implementation on the two platforms, as described
in Section 3. After acquiring a lock, the thread
computes the result as shown in Figure 1. On the
Elan-3 network, the queue messages can carry

P0 P1
lock

get

compute

put

unlock

Caller Computes

P0 P1
send

lock

compute

unlock

Owner Computes

A’ B

A

An

B
B’

An

A

Figure 1: High-level representation of the Caller-Computes and Owner-Computes schemes for
implementing atomic reduction

only very limited payload (~300 bytes), which
corresponds to the size of the network packet.
However, for larger messages this limitation can
be addressed by sending only the data descriptor
and then having the thread on the remote processor
transfer the actual data (array B) using the elan_get
operation. Our implementation is different from
the implementation of MPI_Accumulate [8] on the
NEC SX-5, which uses nonblocking point-to-point
message passing with additional control message,
and relies on the MPI progress engine for
completion of the operation on the remote side.

3. Experimental Evaluation
Our primary platform in this work has been the HP
cluster at Pacific Northwest National Laboratory
based on the dual 1.5-Hz Intel Itanium-2 nodes
running Linux kernel 2.4.20 with HP patches and
using the Quadrics Elan-3 network. In general, the
performance of Elan-3 with the HP ZX-1 chipset
used in the rx-2600 server nodes of the cluster is
not as good as on other systems with Intel chipsets.
The system has been running the latest version of
the Quadrics communication libraries for the Elan-
3 network (version 1.64), which included Elanlib
and MPI. The Quadrics implementation of MPI
included the MPI_Accumulate operation. Figure 2
illustrates the performance of the two
implementation schemes and compares them to
performance of MPI_Accumulate, all for the SUM

operator and the double float data type. The micro-
benchmarks were run using 1 processor per node.
The performance results indicate that the Owner-
Computes scheme delivers the highest levels of
performance. After crossing the message range
corresponding to a single network packet size, the
observed bandwidth drops due to switching the
underlying protocol as described in Section 2.1.
For medium and larger messages, the performance
gain is contributed to the reduced volume of data
transfer as compared to the other scheme (see
Figure 1). The performance of MPI_Accumulate
closely tracks the performance of the Caller-
Computes scheme, suggesting that a version of this
algorithm is used internally by Quadrics.

In addition, we ran the same test on the HP
Alphaserver SC45 cluster at NASA Goddard that
uses the same Quadrics network with the Elan-3
adapter. That cluster employs quad Alpha EV68
processors on each node and runs True64 version
5.1. The version of MPI available on this machine
does not include MPI_Accumulate operation. The
version of the Elanlib is also older (1.3) than the
one available on the Linux/Itanium-2 system.

The performance results are plotted as a function
of the message size in Figure 3. Surprisingly, the
performance characteristics of the two
implementations vary between the True64 and
Linux clusters despite both systems using the same
network. On True64, until the message size

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000 10000 100000 1000000 10000000

Bytes

B
a

n
d

w
id

th
 [

M
B

/s
]

Ow ner Computes

Caller Computes

MPI_Accumulate

Figure 2: Performance of the two schemes compared to the performance of the Quadrics
implementation of MPI_Accumulate on the Linux/Itanium-2 IA64 cluster

reaches about 45 KB, the Caller-Computes scheme
is faster. On Linux, the Owner-Computes scheme
is the most competitive for all message sizes but a
few data points between 300 bytes and 1.2 KB
where performance is consistent with the other
approach. In general, we attribute these differences
to the better efficiency of the interrupt processing
on Linux as compared to True64 and perhaps to
some degree to internal improvements in the
Elanlib implementation. Figure 4 shows the
relative performance of the Owner-Computes

scheme as compared to the Caller-Computes
scheme. For smaller messages on
True64/Alpha cluster, the impact of interrupt
processing on the bandwidth can be seen here.
However, for sufficiently large message sizes
(over 45KB), the cost of the interrupt
processing is hidden by the gain from using
Owner-Computes scheme.

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000 10000 100000 1000000 10000000

Bytes

B
a

n
d

w
id

th
 [

M
B

/s
]

Ow ner Computes

Caller Computes

Figure 3: Performance of the two schemes on the True64/Alpha cluster

Figure 4: Relative performance of the Owner-Computes as compared to the Caller-Computes scheme

4. Application Experience
Floating-point sum reduction is a fundamental
operation needed by distributed-data
implementations of several electronic structure
algorithms in computational chemistry. A typical
example of an algorithm that uses this common
computational kernel is the evaluation of the Fock
matrix elements in a Hartree-Fock (HF)
calculation [12,13] using a local basis set (also
known as a "Fock build"); a very similar algorithm
is the evaluation of the Kohn-Sham matrix
elements in density functional (DFT) calculations
[14]. These two theoretical approaches constitute
the most used methods for studying electronic
structure properties of molecular compounds. The
primary output quantities of these methods are
energy, energy gradients with respect to the
displacement of the nuclei (term used for structural
optimization), and energy second derivatives
(quantities used for calculating vibrational
frequencies and related properties).

In Figure 5, we report the result of benchmark
calculations of HF and DFT second derivatives as
implemented in the computational chemistry code
NWChem [15] on the Linux/Itanium-2 cluster. As
mentioned above, the floating-point sum reduction
is at the center of one of the main kernels used by
this approach. More specifically, the parallel
implementation of the Coupled Perturbed HF (and
DFT) equation [16] in NWChem requires the use
of this operation. Because the solution of the
Coupled Perturbed HF and DFT equation is
achieved by means of an iterative approach that
requires multiple Fock builds, multiple series of
the atomic reduction calls are executed. The
message sizes range from approximately two
hundred bytes up to several kilobytes. Therefore,

the efficiency of this operation directly translates
into improvement of the time to solution, as shown
in Figure 4. On 24 processors, the Owner-
Computes scheme improved the wall-clock time
by 45.5% in the Hartree-Fock calculation and by
33.9% in the DFT Hessian calculation as
compared to the Caller-Computes scheme.

5. Conclusions and Future Work
The papers discussed two methodologies for
implementing atomic reduction on clusters
equipped with high-performance networks.
Although the Owner-Computes scheme is
potentially more efficient due to the reduced
amount of data movement, the higher cost of
interrupt processing on True64 makes it less
efficient for all but large messages. However on
Linux, the Owner-Computes scheme was found to
be more efficient in both the context of
microbenchmarks as well as two applications that
rely on the atomic reduction operation.

The availability of increasingly powerful
processors employed in the NICs makes it feasible
to implement another scheme for the one-sided
atomic reduction operation where computations
would be performed on the NIC. We decided to
leave the NIC Computes approach for a future
work for three reasons. First, the much better
support for floating point operations on the host
rather than the NIC makes this strategy appealing
only for very small messages. Second, the need to
efficiently support the full range of message sizes
would require a hybrid protocol in which small
messages are handled by the NIC Computes
strategy and larger messages by some other
protocol, therefore complicating the
implementation of mutual exclusion mechanisms

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30

processors

ti
m

e

[s

]

Caller Computes

Ow ner Computes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 4 8 12 16 20 24

processors

ti
m

e

[s

]

Caller Computes

Ow ner Computes

Figure 5: Performance (wall-clock time) of the DFT Hessian calculation (left) and Hartree-Fock (right)
application benchmarks on the Linux/Itanium-2 cluster

compatible between these protocols. Finally, we
are looking for an application that, unlike the two
used in the current study, would rely on very short
messages.

6. Acknowledgments
This work was performed under the auspices of the
U.S. Department of Energy (DOE) at Pacific
Northwest National Laboratory (PNNL). PNNL is
operated for DOE by Battelle. This work was
supported by the Environmental Molecular
Sciences Laboratory and the Center for
Programming Models for Scalable Parallel
Computing sponsored by the MICS/ASCR
program in the DOE Office of Science.

References
1. J.S. Vetter, F. Mueller, Communication
Characteristics of Large-Scale Scientific
Applications for Contemporary Cluster
Architectures, Proc. IPDPS’2002.

2. GH Golub and CF Van Loan, Matrix
Computations, John Hopkins University Press,
1993.

3. S. Sistare, R. van de Vaart, E Loh.
Optimization of MPI collectives on clusters of
large-scale SMPs, SC’99.

4. V. Tipparaju, J. Nieplocha, D. Panda, Fast
Collective Operations Using Shared and Remote
Memory Access Protocols on Clusters, Proc.
IPDPS’2003.

5. A. Moody, J. Fernandez, F. Petrini, D. Panda.
Scalable NIC-based reduction on Large-scale
Clusters. In IEEE/ACM SC2003, Phoenix, AZ,
November 2003.

6. http://www.mpi-forum.org/docs/mpi-20-
html/mpi2-report.html

7. J. Nieplocha, RJ Harrison, RJ Littlefield
Global Arrays: A portable shared memory model
for distributed memory computers, Proc.
Supercomputing'94, pages 340-349, 1994

J. L. Traff, Hubert Ritzdorf, Rolf Hempel, The
Implementation of MPI-2 One-Sided
Communication for the NEC SX-5, Proc. SC’00,
2000.

8. www.quadrics.com

9. F. Petrini,W. Feng, A. Hoisie, S. Coll, and E.
Frachtenberg. The Quadrics Network: High-

Performance Clustering Technology. IEEE Micro,
22(1):46–57, 2002.

10. J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D.
Buntinas, S. Kini, P. Wyckoff, and D. K. Panda.
Micro-Benchmark Performance Comparison of
High-Speed Cluster Interconnects. IEEE Micro,
January/February, 2004.

11. V.A. Fock, Naherungsmethode zur Losung
des quantenmechanischen Mehrkorperproblems,
Zeit. fur Phys. 61, 1930.

12. D.R.Hartree, The Wave Mechanics of an
Atom in a Non-Coulomb Central
Field, Proc. Camb. Phil. Soc. 24, 89, 1928.

13. B. G. Johnson, P. M. W. Gill, J. A. Pople, The
Performance of a Family of Density-Functional
Methods, J. Chem. Phys. 98, 5612, 1993.

14. R.A. Kendall, E. Aprà, D.E. Bernholdt, E.J.
Bylaska, M. Dupuis, G.I. Fann, R.J. Harrison, J.L.
Ju, J.A. Nichols, J. Nieplocha, T.P. Straatsma,
T.L.Windus, A.T.Wong, High performance
computational chemistry: An overview of
NWChem a distributed parallel application,
Comput. Phys. Commun. 128, 260, 2000.

15. P.K. Korambath, J. Kong, R. Furlani, M.
Head-Gordon, Parallelization of analytical
Hartree-Fock and density functional theory
Hessian calculations. Part I: parallelization of
coupled perturbed Hartree-Fock equations
Molecular Physic 1755, 100, 2002

