
Optimizing All-to-All Collective Communication by Exploiting Concurrency in
Modern Networks

Vinod Tipparaju
Pacific Northwest National Laboratory

Richland, WA

vinod@pnl.gov

Jarek Nieplocha
Pacific Northwest National Laboratory

Richland, WA

jarek.nieplocha@pnl.gov

ABSTRACT
The paper proposes a novel approach for optimizing performance
of all-to-all collective communication by taking advantage of
concurrency available in modern networks such as Infiniband or
Quadrics. Using the MPI AllGather operation as an example, we
describe how network concurrency can be exploited in an
optimized implementation of this operation. For example,
compared to leading MPI implementations for a 32-KB message
on 128 processors, our new algorithm yields a 65% improvement
on the Infiniband at Virginia Tech and an 89% improvement on
the Quadrics cluster at Pacific Northwest National Laboratory.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Distributed programming,
parallel programming.

General Terms
Algorithms, Theory, Verification, Design and Performance.

Keywords
Collective communication, Network concurrency, All-to-All,
MPI_AllGather.

1. INTRODUCTION
Advances in commodity microprocessors and the advent of

affordable high-performance gigabyte networks have made
clusters a clear choice and widely used alternative to massively
parallel processors (MPPs). High-performance networks have
developed significantly over the past several years. Many of these
networks are capable of remote direct memory access (RDMA)
communication that involves movement of data between
processor memories without memory copies or remote host
processor involvement. Current high-speed networks deploy
powerful communication processor(s) in the network interface
card (NIC) to handle processing of multiple incoming and
outgoing messages without interrupting the host processor. For
example, the Quadrics Elan4 network interconnect can do two
overlapping DMAs and allows multiple outstanding read/write
transactions from and to the network interconnect. Switches used
in the modern interconnects also have developed significantly in

the last several years, facilitating multiple communication paths
between network endpoints and hence roviding increased levels of
concurrency and redundancy communication between network
endpoints [3]. As a result, the modern networks are very capable
of handling simultaneous and concurrent data movements. These
developments lead to a question: can the collective
communication algorithms we have been using on these networks
take full advantage of the concurrency in the network? We
believe that some implementations of collectives based on
multicast are steps in the right direction1 but there also are other
opportunities for performance improvements based on network
concurrency. This paper explores one of them.

This paper discusses how all-to-all collective communication
algorithms can be envisioned to take more advantage at the
algorithmic level of the concurrency in several high-performance
networks. We use the All-Gather collective communication
operation as an example of such algorithms. This operation is one
of the most “network intensive” collective communication
operations known. It requires every process to receive data from
every other process at the end of the operation. All-gather is a
popular collective communication routine included in the MPI
standard and provided in many collective communications
libraries [4-6] and various implementations of MPI [7, 8]. For
example, it is useful in applications that rely on replicated data
approaches when individual processors update a part of a data
structure and then exchange it globally with the others.

Our approach uses multiple asynchronous RDMA operations to
better exploit the network concurrency. We use the term
concurrency index to characterize the number of outstanding
concurrent messages and how it can be used to determine the all-
gather pattern. The paper describes the new baseline algorithm
and then its modification for more efficient handling of larger
messages. The experimental results collected on two platforms,
one with Infiniband and the other with Quadrics Qsnet-II, are
discussed.In addition to the experimental evaluation reported in
the current paper, our approach already has been deployed
successfully in the context of real-world applications. In
particular, it has been used in a computational chemistry
simulation code for updating replicated data structures as a part of
the iterative simulation procedure for computing polarizable water
potentials [9] and for development of a new implementation of the
Numerical Aerodynamic Simulation (NAS) Conjugate Gradient
benchmark [10].

1 Techniques that use multicast to implement collective
communication are network-specific and are applicable for
networks such as Quadrics without native multicast interfaces.
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2. BACKGROUND AND RELATED WORK
Multiple programming environments and communication libraries
for parallel computing rely on collective communications [7, 11-
14]. Collective communication is significant for many
applications and attracts extensive attention regarding their
efficient implementation on modern networks. These efforts to
accelerate collective operations at the implementation level can be
categorized as 1) based on point-to-point operations (we called
them “traditional”), 2) based on multicast, and 3) other advanced
NIC capabilities.

Over the last several years, many methods have been
described for implementing collective communication algorithms.
Among the more common of these algorithms are binary/binomial
and other tree-based algorithms and the pairwise exchange-based
algorithms [5, 15, 16]. Many topology-specific collective
communication algorithms, including the ones to AllGather also
have been discussed. Papers [17, 18] focus on SMP-based cluster
hierarchy to implement collective communication operations.
Paper [16] advocates automatically tuned collectives based on
network topology. The primary focus in these efforts is on other
aspects of the implementation rather than exploitation the network
concurrency at the algorithmic level.

A few papers have used network concurrency to
optimize collective communication. Work by Susumu et al. [19]
uses asynchronous communication and parallelism for
implementing the gather operation. Although this method exploits
concurrency, the communication time still is modeled to be on the
order of log(n), where n is the number of processes. Work by
Mamidala [22] et al. talks about adaptive methods to accomplish
AllReduce by sending/receiving messages farther down the
communication tree and hence utilizing network concurrency.

IRecently, the multicast capabilities network has been used for
all-to-all communication primarily by Dr. Panda’s group at Ohio
State University. Paper [20] describes the NIC-based AllGather
algorithm in which every NIC does a concurrent Gather. This
method involves n*log(n) messages. Paper [21] talks about using

multicast for All-Reduce (has much less data transmission than
All-Gather and involves computation). NIC-based methods have
been used for other collective operations [22] [23]. These efforts
use NIC and multicast to implement traditional collective
algorithms efficiently. However, they differ to a great degree
from our approach, which is implemented without relying on
these capabilities and is based on multiple asynchronous RDMA
messages and therefore applicable to networks without multicast
or with very limited or impractical NIC-level programmability.

2.1 Network concurrency in current networks
Current trends on high-speed interconnects include the
availability of a communication processor in the NIC, which
allows the implementation of high-level messaging libraries
without explicit intervention of the main central processing unit
(CPU). The Myricom Myrinet network [24], Infiniband [17], and
Quadrics QsNet [3] are a few examples of networks that offer
RDMA capabilities with the assistance of the processors they
have available on the NIC. These networks also offer a good
amount of concurrency in data transmission and offer excellent
bidirectional bandwidth. We focus on the Mellanox Infiniband
Interconnect and Quadrics QsNetII network for experimental
evaluation of highly parallel All-Gather algorithms proposed in
this paper.

QsNetII is the latest generation of the Quadrics interconnect. It
consists of two application-specific integrated circuits (ASICs)—
Elan4 (Figure 1) and Elite4. The Elan4 communication processor
forms the interface between a high-performance multistage
network and a processing node containing one or more CPUs.
Elite4 switch components are capable of switching eight bi-
directional communications links. Each communications link
carries data in both directions simultaneously at 1.3 GBytes/s.
The link bandwidth is shared between two virtual channels. It
uses wormhole switching with two virtual channels per physical
link, source-based routing and adaptive routing. The network has
support for zero-copy RDMA transactions and the hardware
support for collective communication [25]. The functional units of

Figure 1: Left - Elan 4 NIC [1], Right – Mellanox InfiniHost NIC [2] schematic diagrams
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the Elan4 are interconnected using multiple independent 64-bit
data buses. The use of separate paths increases concurrency and
reduces data transfer latency. The user processes can perform
remote read/write memory operations by issuing DMA commands
to the Elan4. The DMA engine processes up to two DMAs to
overlap the start-up/finish latency and maintain full PCI-X read
bandwidth.

Infiniband architecture (IBA) defines a switched communications
fabric, allowing many devices to communicate concurrently with
high bandwidth and low latency in a protected, remotely managed
environment. A node can employ multiple paths through the IBA
fabric. IBA hardware off-loads from the CPU much of the I/O
communications operation. This allows multiple concurrent
communications without the traditional overhead associated with
communicating protocols. In the current work, we used the
Mellanox Cougar HCA cards.

3. ALGORITHMS AND THEORY
For all-to-all communication, pairwise and butterfly algorithms
are known to be a better choice because their complexity is on the
order of log(n) (logarithm of n with base 2) where n is the number
of processors. The Argonne National Laboratory MPICH [7]
implementation uses a pairwise exchange algorithm. It should be
noted that the times modeled in the following equations under the
assumption that the switch bisection bandwidth is sufficiently
large so that it can be ignored from the analysis.

In the equations, the symbol o represents a constant
overhead per step. Time taken by traditional send/receive-based
pairwise exchange algorithms can be represented by Equation (1).

The symbol t(m) in Equation (1) stands for time taken to prepare,
initiate and transmit a message of size m. This is a log(n) step
exchange, and in step i a message of size m*2i is exchanged. By
using blocking messages, time for the exchange is twice the time
it takes to transfer a unidirectional message of size m*2i. For
log(n) steps, this is what is shown as T1 in Equation (1).

Traditional message passing-based pairwise algorithms
tend to use unidirectional network bandwidth. Pairwise algorithms

that use the non-blocking point-to-point communication can in
principle better utilize the bidirectional bandwidth and hence have
a potential to give better performance than algorithms based on
blocking messages. Time taken by these algorithms can be
approximated as shown in Equation (2). The time per step is a
factor of the bidirectional bandwidth. So, for a step i, the time

taken can be represented by )2( imT ⋅ , )(mT is the time taken

to prepare, initiate, and transmit a message of size m when
communication is bidirectional. Hence, the T2 in Equation (2)

represents the sum over log(n) terms for each of these steps. It
should be noted that t(m),which was introduced earlier, represents

time similar to that of )(mT but for a unidirectional message.

However using the bidirectional bandwidth is just the
first step in the attempt to use available concurrency. As
discussed in Section 2, many current-generation NICs and
switches are capable of concurrent processing of messages. But
this feature offered by many networks is rarely considered while
designing collective communication algorithms. Here we describe
two methods that use network concurrency to reduce the time
taken by traditional pairwise collective communication
algorithms, particularly All-Gather.

We introduce a term we call concurrency index (C),
which indicates how many concurrent exchanges the algorithms
described below perform. Figure 2 shows two ways of
implementing concurrent exchange on 16 processors. The
traditional pairwise All-Gather takes 4 steps to complete the All-
Gather operation such that every processor has every other
processors data. In Figure 2, the encircled regions show the
exchange occurring in that group. The dotted lines connecting the
encircled regions show the nonblocking messages sent during
each step of the exchange with in each group. Steps are indicated
with numbers. Lines connecting groups show messages
exchanged in a nonblocking manner by every process in each
group, between the groups, for each step of the exchange with in
the group. The left side of Figure 2 shows the 16 processes
divided into two groups. This is a good way to do concurrent
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Figure 3: Left – Regular Pairwise Exchange. Right – Concurrent exchange with concurrency index 2 and without splitting
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exchange if the network supports algorithms using two concurrent
messages. Each group, in each step of the exchange, does an
exchange with its pair process. In addition, it sends a
nonblocking message to a corresponding pair process in the other
group. Steps are indicated with numbers. For example, in step 1,
Process 0 sends a message to Process 1. It also initiates a
nonblocking message to the peer process of Process 1 in the other
group, which is Process 9. On the right side, the 16 processes are
divided into four groups. This is ideal if the network is able to
support algorithms with four concurrent messages. Here, each
process, in each step of its exchange, exchanges data with a peer
process in the same group and simultaneously sends nonblocking
messages to corresponding pair processes in all the other three
groups. This corresponds to the new method described below.

3.1 Concurrent Exchange Algorithm-Baseline
Unlike the traditional pairwise method, the concurrent exchange
algorithm involves only log (n/C) steps for n processes, where C
is the concurrency index. This method communicates in such a
way that with sufficient concurrency in the network, it would
incur much less communication overhead than the traditional
pairwise approach. In this method, the number of processes is
divided into C groups. Each process in a group has a peer process
in every other group. Processes in every group do a log(n/C) step
pairwise exchange. Before entering the log(n/C) step exchange
loop, every process initiating nonblocking put of its data to its
peer process. Time for this is �. After entering the loop, for each
of the log(n/C) steps, every process initiates a nonblocking send
of the data it has both to its pair process in its group and the
corresponding peer-of-pair processes in every other group. The
pair process is in the same group as the process itself while the
peer-of-pair is the corresponding pair process in the other group.
This requires a notification mechanism that notifies the remote
process of the completion of a send done to it. With sufficient
concurrency, the time taken by this method to complete can be
approximated as shown in Equation (3). Because there are only
log(n/C) steps in the critical path, the time for the All-Gather
exchange is T(m*2i) per step, where T(m) is the time to transmit a
message of size m, bidirectionally. In addition, each step has the
initiation cost of a nonblocking message to C-1 groups. This is
shown as the left side of the summation in Equation (3). Hence
time per step is: T(m*2i)+ �. Sum over log(n/C) steps for this is
shown as T3 in Equation (3). � is the time to prepare and initiate a
message.

Dotted lines on the right side of Figure-3 represent nonblocking
operations. Figure-3 shows how this algorithm works for four
processes for concurrency index C = 2. the left side of Figure 3
represents the traditional pairwise exchange algorithm. The right
side of Figure 3 shows how the new algorithm described here
works. The encircled step on the right side represents the step
before the exchange were each process initiates a nonblocking
send of its data to its peer process in the other group. The cost of
this step is constant and is less than 5 microseconds for most of
the networks (GM2, Infiniband, Elan4) on which we measured it.
The cost of doing this, however, shows up in the critical path for
very small messages.

This method works well only for short and medium-length
messages. The improvement that can be obtained, time-wise, can
be represented as a difference between the time for All-Gather
using the pairwise method (T2) and the new method (T3). This can
be seen in Equation (4) as T2-T3.

When the message size is very large we need a special provision
to account for the way the NIC handles consecutive asynchronous
messages. Hence, for very large messages, we propose a
modification to the current algorithm.

3.2 Concurrent Exchange with Message
Splitting
We describe the method for concurrency index of 2. This method
has the same number of steps as in a pairwise method but instead
of sending whole message to a pair process, we split the message
into two halves and send the second half of the message to what
we call the co-pair process. We define the co-pair process as a
process at the same distance as the pair process but in the
opposite direction. Hence in this method, two pairwise exchanges
happen simultaneously in two directions. The objective of this
method is to employ the unused links in a pairwise exchange
method and hence offer more concurrency in the exchange.
Figure 4 shows this exchange on four processors. In the first step
of the exchange loop, each process sends one half of the data it
has to its pair process and the other half of its data to the co-pair
process. In step two, each process has four halves of the data. It
now sends half of it to its new pair and the other half to its new
co-pair. The cost of this method when doing two simultaneous
exchanges can be approximated as T4, shown in Equation 5.

The tradeoff this method involves is that for each step, it may split

the message into many chunks; hence, on networks with no
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Figure 4: Concurrent exchange with concurrency index
of 2 and data splitting. Data on each process has been
divided into two halves.
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noncontiguous transfer support, this would involve multiple
message transfer initiation penalties. On networks with
noncontiguous data transfer support, like Infiniband and Elan-4,
the transmission of these chunks can be handled as a single
message.

4. EXPERIMENTAL RESULTS
We have implemented algorithms described in Section 3 and
evaluated them experimentally. The experiments were performed
on two clusters:

1) Infinband Cluster: This is a cluster of MAC OS-X nodes at
Virginia Tech. Each node has dual 2.3-GHz PowerPC 970FX
processors with 4 GB RAM and one Mellanox Cougar InfiniBand
4x HCA.

2) Elan4 Cluster: This is a Linux cluster at PNNL. The nodes we
were using had dual 1.5-GHz Intel IA64 Madison processors with
6 GB RAM and the Quadrics Elan-4 interconnect.

All the experiments were performed while running on only one
processor per each dual-processor node.

4.1 Concurrency and Overhead
The proposed method relies on availability of concurrency for
Infiniband and Quadrics networks. To evaluate the available
network concurrency, we ran two experiments, both on eight

processors. The first experiment involved all the participating
processors doing puts in a ring, and we timed the completion of
the put. In Figure 5 (left side) this time is compared to the time
required to do two puts of the same size in two different
directions and waiting for them to complete. It can be seen that
for messages up to 16 KB, doing two puts to different destinations
takes much less than twice the time taken to complete one put to a
single destination. This confirms concurrency in the network.
This ability applies not only to the NIC but also to the switch. The
results in Figure 5 (left) provide a motivation for splitting large
messages as described in Section 3.2.

On the right side of Figure 5, time taken to do one put is
compared to the time taken for initiating two puts to two different
processes but waiting for only one of them to complete. This is
done to measure the overhead incurred when additional
nonblocking puts are pending, as done in the new method. It can
be seen from Figure 5 that there is higher overhead on the
Infiniband network whereas the overhead on Quadrics is very
limited. This experiment was done on only two destinations
because only a concurrency index of 2 is evaluated in
experimental evaluations in the balance of this paper.

4.2 All-Gather Performance
We implemented the All-Gather operation using network
concurrency as described in Section 3. In addition, we

Figure 5: Network concurrency tests (left): Time to initiate and complete 1 put vs. time to initiate
and complete 2 puts of the same size to different destinations. Overhead test (right): Time to
initiate and complete 1 put vs. time to initiate 2 puts to 2 destinations and complete the first
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implemented a nonblocking message-passing version of the
MPI_AllGather operation to correspond to the complexity
described in Equation (2). We did this for two reasons:
1)MPI_AllGather on quadrics was not based on pairwise
exchange, and 2)we wanted to give a contrast to the pairwise
exchange-based MPI_AllGather in MVAPICH that we compared
against to understand the effectiveness of their implementation.
From a theoretical standpoint, assuming a negligible cost of
initiating a message and sufficient network concurrency in the
network, the new algorithm should give a performance
improvement as represented by Equation (4), with concurrency
index of 2. This corresponds to the example shown in Figures 3
and 4 in Section 3 with a concurrency index of 2.

Figure 6 shows the estimated and actual performance
for a 1024-byte exchange on 128 processors of the Infiniband and
Quadrics networks. The estimated performance was calculated by
setting the values for the corresponding message size and number
of processes in Equation (2). It can be seen from Figure 6 that the
actual performance is close to that of the expected performance
for Infiniband. We believe that the cost of descriptor processing
overhead in the Infiniband Verbs API layer (see Figure 5 and
Section 4.1) is in part responsible for the mismatch. The
descriptor processing time is constant and thus adds a constant
overhead. Unlike the Infiniband clusters where the measurements
obtained in consecutive runs were very close, the results on the
Quadrics-based cluster appeared to have substantial variability
between runs (we use average timing from multiple runs to

produce the graphs). We attribute these variations to the system
“noise” caused by daemons that interrupt the processes in the job.
This noise has been observed by some other experiments run on
this cluster and has been measured; however, such analysis is
beyond the scope of this work. Because collective operations
amplify the performance degradations caused by system noise, we
believe this factor is responsible for the larger discrepancy
between theoretical and measured values.

Figure 7 shows the execution time of the proposed
algorithm compared to the MPI_AllGather operation and the
pairwise All-Gather algorithm we implemented measured on the
Infiniband cluster. For each processor count, we plot

%100
_

⋅
AllGatherMPI

methodproposed

T

T
and %100⋅

pairwise

methodproposed

T

T

quantities. The values less than 100% indicate that the proposed
method is faster than the reference implementation. Figure 7
shows this for messages ranging from 512 to 32768 bytes. Note
that on 128 processors, when each processor does an exchange of
32768 bytes, the total amount of data transferred to each
processor is ~4MB (127*32768). The MPI_AllGather on the
Infiniband cluster, a part of MVAPICH from Ohio State
University, delivers very good performance (better than the
pairwise algorithm) and has been implemented with less
overhead. Still it can be clearly seen that our method, for all the
tested processor cases and message sizes delivers superior
performance due to its concurrency and asynchronous nature, .

Figure 6: Ideal vs. Actual time in comparison to pairwise exchange Top: Infiniband, Bottom: Elan4
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The method clearly shows a performance gain even for very large
All-Gather operations. For larger message sizes and higher
processor count, the performance advantage tends to be higher. It
ranges from 7% to 58% over the MPI_AllGather and Pairwise
algorithm.

Figure 8 shows the same quantities for the Elan-4
cluster. For this experiment, we used the MPI implementation
from Quadrics (QSNETlibs Version 1.8). On that cluster, the new
method shows even a higher performance improvement over
MPI_AllGather than on Infiniband. It was measured to range from
19% to 88% over MPI_AllGather and from 11 to 66% over the
pairwise algorithm. For very small messages (<128 bytes) we did
not observe any performance improvement over traditional flat
tree or pairwise exchange based methods. We attribute this to our

implementation of these algorithms and the overead of initiating
multiple messages.

5. CONCLUSION AND FUTURE WORK
The paper described a novel algorithm for optimizing
performance of all-to-all collective communication. It attempts to
take advantage of concurrency available in modern networks such
as Infiniband or Quadrics and relies on multiple nonblocking
RDMA operations. In particular, the technique has been deployed
in the MPI_AllGather operation, one of the most communication-
intensive collective operations known. The experimental results
on the Infiniband and Quadrics Qnet-II clusters showed
substantial performance advantage of the proposed algorithm over
the MPI_AllGather implementations in MPI and the pairwise All-
Gather algorithm. Our future work will focus on applying the

Figure 7: Execution time of the new method as a percentage of the execution time of
MPI_AllGather and execution time of the pair-wise algorithm on Infiniband
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described methodology to other collective all-to-all
communication operations. We will also investigate the best ways
to use these algorithms for small (8 to 128 byte) messages.
Finally, we plan to incorporate these algorithms into collective
communication in the ARMCI communication library [26].
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