
Abstract 
This paper describes and evaluates protocols for 
optimizing strided non-contiguous communication on the 
Quadrics QsNetII high-performance network 
interconnect. Most of previous related studies focused 
primarily on NIC-based or host-based protocols. This 
paper discusses merits for using both approaches and 
tries to determine for types and data sizes in the 
communication operations these protocols should be 
used. We focus on the Quadrics QsNetII-II network which 
offers powerful communication processors on the network 
interface card (NIC) and practical and flexible 
opportunities for exploiting them in context of user. 
Furthermore, the paper focuses on non-contiguous data 
remote memory access (RMA) transfers and performs the 
evaluation in context of standalone communication and 
application microbenchmarks. In comparison to the 
vendor provided noncontiguous interfaces, proposed 
approach achieved very significant performance 
improvement in context of microbenchmarks as well as 
application kernels- dense matrix multiplication and the 
Co-Array Fortran version of the NAS BT parallel 
benchmark. For example, for NAS BT Class B 54 % 
improvement in overall communication time and a 42% 
improvement in matrix multiplication was achieved for 64 
processes. 

1. Introduction  
Advancements in the system area network technology has 
lead to development of high speed interconnects and 

powerful network interconnect cards (NIC) with higher 
processing power and more memory on them than 
available ever before. For example the Elan-4 card from 
Quadrics has 64MB of RAM and a 64 bit multi-threaded 
400 MHz RISC processor; the Mellanox InfiniHostIII 
network interconnect has a support for 256MB RAM and 
has a InfiniRiscIII RISC processor. The designers of these 
networks made the processing power in the NIC available 
to facilitate offloading of the communication protocol 
processing. Furthermore, these capabilities have been 
even utilized by researches to even offload some 
computations from the host to the NIC. Particularly this 
was done, in context of collective communication[1, 2] 
and non-contiguous data transfers [3]. These prototype 
implementations and demonstrations of NIC processing 
benefits lead to the following question: How far can we 
go with offloading communication and computation to the 
modern NICs given their power and limitations?  Clearly, 
the processors on the NIC were not designed to be as 
powerful as the host processors, they lack or have limited 
floating-point processing capabilities, often reduced 
memory bandwidth that matches the network speed rather 
than the system bus, and are attached through an I/O bus 
that introduces extra latencies and limitations in accessing 
data located in the main memory of the machine. 
Moreover, taking over NIC processor power to offload 
computations (e.g., in collective operations) can 
compromise its ability to handle the network traffic. 
Oversubscribing the NIC processor may lead to network 
congestion and delays in communication. Although NIC-
based processing scheme may perform better in context of 
micro-benchmarks and certain message ranges but may 

 
Optimizing Strided Remote Memory Access Operations on the 

Quadrics QsNetII Network Interconnect 
Jarek Nieplocha, Vinod Tipparaju, Manoj Krishnan 

Pacific Northwest National Laboratory 

Figure 1: Elan4 NIC(left) and Elan4 Command Processor (Right) 



ultimately compromise real application performance. This 
was our motivation for evaluating performance both in 
context of communication microbenchmarks as well as 
applications.  

The importance of optimizing noncontiguous data 
transfers in communication as well as I/O has been shown 
before [3, 4]. In this paper we describe, implement, and 
evaluate two methods for optimizing noncontiguous 
RMA. In particular, we focus on important class of 
noncontiguous communication namely strided 
communication. Strided communication is important for 
applications and programming models that require 
communication of sections of multi-dimensional dense 
arrays. We focused on the Quadrics QsNetII network 
interconnect and exploited its Elan-4 adapter. We 
developed two novel algorithms using either purely NIC-
based support or hybrid host-NIC approach. The first 
method is called NIC-based method, and relies on the user 
programmable processor of the NIC to process strided 
communication descriptor and offload the non-contiguous 
data transfers from the host to the NIC. The other is the 
hybrid host-based-NIC-assisted (HBNA) method, and 
relies on the NIC processor to manage the communication 
buffers while the host processor performs packing and 
unpacking data before and after the transmission, 
respectively. The NIC-based method requires more 
processing on the NIC than the hybrid HBNA method. 
We analyze these methods and evaluate the impact they 
have on application performance. For example, the 
experimental results indicate that the proposed methods 
improve performance of SRUMMA by 42% for NIC-
based and 40% for HBNA on 64 processes for the matrix 
multiplication benchmark over the vendor provided 
noncontiguous interfaces (elan_putv and elan_getv). 

The rest of the paper is organized as follows: in Section 2 
we describe the QsNetII network interconnect. In Section 
3 we briefly discuss non-contiguous RMA and the non-
contiguous interface for QsNetII interconnect Quadrics 
provides. In Section 4 we describe the communication 
model for non-contiguous data transfers.  Section 5 
discusses the design and implementation of the NIC-based 
and the host-based-NIC-assisted methods, Section 6 
shows the results of experiments we conducted and 
discusses application performance, Section 7 talks more 
about related work, we conclude in Section 8. 

2. QsNetII Network Interconnect 
QsNetII [5] is the current generation of the Quadrics 
interconnects. It consists of two components: Elan4 NIC 
and Elite4 switch. The Elan4 communication processor 
forms the interface between a high performance 
multistage network and a processing node containing one 
or more CPUs. Elite4 switch components are capable of 
switching eight bi-directional communications links. Each 

communications link carries data in both directions 
simultaneously at 1.3 GBytes/s. The link bandwidth is 
shared between two virtual channels. It uses wormhole 
switching with two virtual channels per physical link, 
source-based routing and adaptive routing. The network 
has support for zero-copy RDMA transactions and the 
hardware support for collective communication[6]. The 
functional units of the Elan4 are interconnected using 
multiple independent 64-bit buses for better concurrency. 
The user processes can perform remote read/write 
memory operations by issuing DMA commands to the 
Elan4.   

The Elan4 communications processor has a 64 bit multi-
threaded RISC processor called the thread processor; this 
can be seen on the left side of Figure 1. The primary use 
of thread processor is to aid the implementation of higher-
level communication protocols without explicit 
intervention from the main CPU. For example, it is used 
to implement message passing to aid the MPI library for 
Quadrics network. The instruction set and the registers 
have been optimized for low latency thread startup and 
are able to overlap the execution of the first instruction of 
a new thread while data is still being saved from the 
previously executing thread.  If command processor is 
idle, data from PCI bus goes straight through without 
being buffered. If the command processor is busy when 
the data arrives, data stored in the 64MB DDR-SDRAM 
and handled after the command processor is available. 

The DMA engine shown in Figure 1 is able to do DMA 
with arbitrary source and destination alignment. It 
services a queue of outstanding DMA requests and 
ensures that they are completed reliably. In addition to the 
regular DMA, there are facilities to issue broadcasts and 
queued DMA as well. Commands can be issued to the 
Elan-4 by writing to the command port. The command 
ports are mapped directly into the user process's address 
space and are able provide very low latency 
communications. The model for writing to the command 
port is based on queues. The user may request the 
allocation of a command queue of a specified depth. 
Several separate queues can be simultaneously defined for 
different user and system processes. Once allocated 
command queues can be written to directly without OS 
intervention. The command queues automatically handle 
network retries without further user intervention [5]. 

3. Strided Non-Contiguous Data Transfer 
Non-contiguous data transfers occur in any application 
that accesses in a single operation disjoint fragments of 
data structure. For example, a portion of multidimensional 
array on one processor is needed by another processor. A 
common example of this is when boundary data from 
other processors is needed to complete a step in the finite 
difference calculations. If the portion of data needed from 



the remote processor represents a distinct subset of the 
array held on the remote processor (which is almost 
always the case) then the data will be laid out in memory 
in strided segments. The same is true for the region on the 
local processor into which the data will be copied. It is 
also possible that the stride lengths on both remote and 
local processors will be different. A more complicated 
situation arises when the data is unstructured. In this case, 
the data is usually laid out in a one-dimensional fashion 
but data access is highly irregular corresponds to a more 
general scatter/gather class of operations. 

Non-contiguous RMA operations are included in Global 
Arrays are central to the applications of the toolkit. 
ARMCI, which is used by Global Arrays and Co-Array 
Fortran as a run-time, has two different non-contiguous 
data formats it supports: vector and strided.  In the present 
paper, we focus on optimization of the strided operations. 
The strided operations are very important for Co-Array 
Fortran applications and are exploited in context of the 
NAS BT benchmark used for the experimental evaluation 
discussed in Section 6.   

4. Analysis of Non-contiguous 
Communication Performance 
The simplest communication model to model the time to 
send n byte message is by a linear model as shown below. 

 Time to transfer n byte contiguous message, 
Tcomm = ts + tn * n 

where, tn is data transfer time per byte = 1/(Network 
bandwidth),  ts - latency (and/or start-up cost), n - number 
of bytes to be transferred. 

While combining these parameters may be appropriate for 
contiguous messages, we argue that this model is not 
accurate for non-contiguous messages. A natural way for 
a programmer to incorporate non-contiguous messages 
into a program is to group/aggregate several contiguous 
messages destined to the same processor into a longer, 
and thus more efficient, message. However, the ability to 
send long messages may require changing the algorithm 
and communication structure, trading off extra bandwidth 
against running time.  

Let us assume sending a non-contiguous message from 
one processor to another requires sending k segments of 
contiguous message of size n bytes (as shown in Figure 
1). The time to transfer a contiguous message can be 
modeled as 

Tcxomm  = k * (ts + tn * n) = k * ts + tn * N  (1) 

where N = k*n bytes. 

Cost of packing and unpacking: 

Non-contiguous data targeting the same processor can be 
packed in to a contiguous communication buffer. 
Therefore, total size of the message to be transferred is N  
(k*n) bytes. Assuming packing and unpacking on each 
end, the above model becomes, 

 Tcomm = ts + tn * N + 2 * tm * N (2) 

where tm is the data copy time per byte. tm = 1/(memory 
bandwidth). The formulas for Tcomm for strided and 
packing-based non-contiguous data transfers are shown in 
(1) and (2), respectively. Using (1) and (2), the optimal 
data transfer method can be selected for non-contiguous 
message based on the size. For example, in a system with 
high memory bandwidth, if there are too many strides (k) 
in a non-contiguous message, then packing-based data 
transfer seems to be appropriate. (i.e., k * ts > 2 * tm * N). 

5. Design and Implementation 
Both the NIC-based method and hybrid HBNA method 
have NIC involvement in the implementation of the 
communication protocols. However the NIC-based 
method has relatively more NIC participation and the 
HBNA method has significant host participation. One of 
the standard techniques for optimizing noncontiguous data 
transfers is based on using intermediate “bounce” buffers 
used to assemble network messages based on collection of 
data segments the user noncontiguous request is 
composed of. Managing these buffers efficiently requires 
special care when solving flow control.  

5.1 Host-based-NIC-assisted method 
For the host-based-NIC-assisted method, we describe the 
design and implementation of the non-contiguous PUT 
operation. We call the process initiating the PUT 
operation as the source and the process which is the target 
of this PUT message as the destination. Source NIC and 
destination NIC similarly correspond to NICs on the 
nodes on which the source and destination are. 
Intermediate pack/send buffers used to pack and send the 
data. Similarly, receive buffers are used for receiving the 
packed data. These buffers can be seen in Figure 3. In 
addition, the NIC on each node has as many receive buffer 
flags as the receive buffers on the node. Each of these 
receive buffer flag’s corresponds to a receive buffer on the 
host. The RMA operations in the HBNA method have two 

Figure 2: Non-contiguous data representation from a 
contiguous 2-d data block. 

n bytes

2-d  data grid

k
segments

n bytes

2-d  data grid

k
segments



concurrent steps. The first step is to assure availability of 
the destination receive buffer, on the destination node, for 
packing and unpacking data in noncontiguous 
communication. The second step is the actual packing and 
transmission of the non-contiguous data. 

Our solution exploits the Quadrics thread processor on the 
NIC for managing access to the remote receive buffers. In 
addition, the remote host processor is required for data 
packing/unpacking. Unlike the two-sided protocols where 
this operation is done as a part of the receive operation, 
the RMA communication requires handling this operation 
asynchronously without explicit cooperation of the user 
calls on the remote side. In particular, we use so called 
server thread [7]. The server thread is blocked in 
elan_queueRxWait the queue wait call provided by the 
Quadrics libelan interface.  When the message arrives the 
thread is awaken and becomes available for processing. 
This interface is very well supported by the underlying 
Elan-4 hardware but supports only short messages that fit 
in the single network packet.  

The first step is implemented as follows:  Each NIC uses 
as many flags as receive buffers on its host. These flags 
are set by the thread processor for the requesting host and 
cleared by the local host. This scheme is analogous to the 
producer-consumer problem. The NIC can only set the 
flag for a request from a remote host if the flag is “clear” 
and the host can only reset the flag on the local NIC if the 
flag becomes “full”.  

To assure availability of the remote receive buffer, the 
source node first sends a request to the destination NIC to 
locate a free buffer. The NIC checks the receive buffer 
flags to find one with the value of the flag marked as 
clear. Once the destination NIC finds a cleared flag, it is 
an indication that the corresponding receive buffer on the 
destination node is available and ready for use. The 
destination NIC now sends the information about the 
available buffer to the requesting source node. Once the 
destination node receives the data into this receive buffer 
and finishes processing the data in the buffer, it can mark 
the receive buffer as available. Hence it clears receive 
buffer flag on the NIC corresponding to the current 
receive buffer. The second step involves packing and 
transmission of data. 

The data and functional units involved in the 
implementation of the PUT operation are shown in Figure 
3. To do the PUT operation, the source node first initiates 
its request for the remote buffer; this process is described 
as the first step in the paragraph above and can be seen as 
an arrow labeled as request in Figure 3. While this request 
is in progress, the source packs the data into a local 
pack/send buffer. This is shown as an arrow labeled as 
pack in Figure 3. After packing the source data, the source 
node waits for a response (arrow labeled as response in 

Figure 3) from the destination NIC in regards to the 
availability of a destination buffer. By waiting for a 
response after packing the source data into the pack/send 
buffer, we are overlapping the time taken to request a 
buffer and get response with the packing of data into 
pack/send buffer. After obtaining destination receive 
buffer information, it transmits the data to the destination 
buffer (send in Figure 3) on the destination node and 
repeats this entire process of requesting, packing and 
sending until entire source data is transmitted. 

The successful completion of this operation has one 
additional logic adhered to it. In addition to the packed 
source data, the source node also needs to transmit a 
descriptor with information about how and where to 
unpack the data on the destination. Since the libelan 
message queuing interface only supports small messages 
(<2k), the descriptor information must be transmitted 
separately from the data for larger message sizes. 
Addressing this requirement is not straightforward on 
networks (such as Elan-4) that do not provide ordered 
message delivery is not straightforward.  

To minimize idle time for messages larger than 2KB, the 
destination server thread should not be awaken for 
unpacking of data until both the descriptor and the data 
completely arrived in the destination receive buffer. To 
solve this problem efficiently we use an advanced 
hardware feature of the Quadrics NIC called DMA 
chaining. The DMA chaining concept is illustrated in 
Figure 4. We issue the DMA message with the data and 
link or chain the second message that carries the 
descriptor. The packed data is send as DMA message to 
appropriate receive buffer on the destination node. 
Completion of that transfer sets the hardware event on the 
sending node. The event triggers transmission of the 
chained message that contains the descriptor. That 
message is send to the remote message queue. Upon 
arrival in the available queue slot and generates an event 

Figure 3: Host-Based-NIC-Assisted (HBNA) method  

HOST

...

CPU

Receive 
Buffers

User Data

Send/Pack 
Buffer

NIC

Thread 
Processor …

Recv Buf flags

NIC

Thread 
Processor

1 …

HOST

1

...

CPU

Receive 
Buffers

User Data

Send/Pack 
Buffer

Request

Response

P
ac

k

Send

Recv Buf flags

HOST

...

CPU

Receive 
Buffers

User Data

Send/Pack 
Buffer

NIC

Thread 
Processor …

Recv Buf flags

NIC

Thread 
Processor

1 …

HOST

1

...

CPU

Receive 
Buffers

User Data

Send/Pack 
Buffer

Request

Response

P
ac

k

Send

Recv Buf flags



that wakes up the destination server thread. The chaining 
technique we described solves an important flow control 
problem and provides efficient operation with minimal 
host CPU utilization.  The host CPU is only used for 
packing and unpacking the data. The NIC thread 
processor is only involved in sending the source node 
information and selecting available destination receive 
buffers. 

5.2 NIC-Based method 
For the NIC based method we describe the design and 
implementation using the PUT operation on non-
contiguous data. This is because the implementation of 
GET RMA operation just involves sending a message to 
the remote NIC requesting it to do a PUT.  

In the NIC-based method when a non-contiguous PUT 
operation is initiated, the source and destination 
descriptors are sent to the thread processor on the NIC. 
The thread processor then decodes the descriptors and 
initiates a series of contiguous data transfers. The NIC 
thread processor maintains a request queue (see Section 2) 
of a limited size to do flow control for the series of data 
transfers it initiates. This request queue can be seen in 
Figure 5 which represents basic data and functional units 
in the NIC-based algorithm. In Figure 5, the “current” 
requests are the ones that are currently processed to be 
issued. The “issued” requests are the requests that have 
already been submitted to the DMA engine of the NIC. 
The processed requests are the ones that have been 

completed. This queue works like a sliding window for 
the queue of DMA requests that correspond to the 
noncontiguous data transfer. When the queue is full, 
progress can be made only when a request is processed. 

The NIC level code is written such that thread processor is 
yielded after the non-contiguous request are issued. Thus 
the NIC quickly becomes available to service other 
requests. The thread processor CPU is a shared resource 
responsible for processing of multiple protocols and 
services supported through the NIC. This helps other 
protocols (e.g. MPI where the thread processor is used for 
message tag matching) to make progress. 

6. Performance Evaluation 
We used several strategies to evaluate our implementation 
of the non-contiguous RMA data transfers. Our objective 
was to choose experiments that expose the advantages and 
disadvantages of each of the methods discussed above and 
the impact on the overall application performance they 
have. Ultimately, we found that a hybrid method that 
switches between NIC based and HBNA methods based 
on the message size and the shape of the non-contiguous 
data provides the best performance. 

We ran experiments on the HP cluster at PNNL. Each 
cluster node has dual IA-64 Madison 1.5GHz CPU’s on a 
HP ZX1 Chipset. QsNetII interconnect connects the nodes 
in the cluster. The interconnect connects to the system via 
a 133MHz PCI-X bus, which is capable of sustaining 
1GB/s bandwidth. 

6.1 Micro-Benchmarks 
We ran a micro-benchmark to measure the point to point 
performance of these methods. This micro-benchmark 
involves one process doing a series of PUT operations to 
all other processes. The data transfers involve 2-
dimensional square array sections. We ran this benchmark 
on 4 processes each situated on a different node. Figure 6 
shows the performance of each of these methods for 
various message sizes. It can be seen from Figure 6 that 
although the HBNA method has some host involvement, 
for some message range, it out-performs both the NIC-
based and the vendor provided methods. However the 
HBNA method may still impact the over-all application 
time because it does interrupt the remote processor, which 
could potentially be doing some useful computation. The 
primary reason for better performance of the HBNA 
method here is the following. This method copies the 
smaller non-contiguous chunks of data into a larger 
chunk. Peak bandwidth for Elan4 is attainable for strided 
messages over 100KB. The attainable bandwidth 
increases with message size until then. This means, by 
copying smaller chunks into a larger chunk and then 
transmitting, the HBNA method may achieve better 
bandwidth. The cost of copying packing and unpacking is 

Figure 4: Message chaining of data and descriptor 

CPU

NIC

Data 
DescriptorPacked Data

NIC

Thread 
Processor

Event 
Queue

CPU

Data 
DescriptorPacked Data

0 1 2 3

CPU

NIC

Data 
DescriptorPacked Data

NIC

Thread 
Processor

Event 
Queue

CPU

Data 
DescriptorPacked Data

0 1 2 3

Figure 5: NIC based method 

Host

User Data
Data Descriptor

Host

User Data
Data DescriptorIssued

Current

Processed

Request Queue

NIC

Issued

Current

Processed

Request Queue

NIC



offset by the higher bandwidth it has for transmitting 
messages of a larger size. We later observed the same 
effect when analyzing the performance of the NAS BT 
benchmark. 

6.2 Analysis of NIC-based and Host-Based-NIC-
Assisted Methods 
We include results for two different methods that can be 
implemented for non-contiguous data transfers. The first 
one is the HBNA method involving packing and 
unpacking of data. The HBNA method involves multiple 
message transmissions. It overlaps data copy time with 
data transmission time. To analyze the advantage of this 
overlapping and pipelining, we compared HBNA to a 
similar copy-transmit-copy implementation but without 
any overlap or pipelining. From the right side of Figure 7, 
the advantages of the HBNA method can be seen.  We 
compare the performance of the NIC-Based method to the 
performance of vendor provided non-contiguous interface. 
To evaluate the advantages of doing this at the NIC level, 
we compare NIC based method to the naïve way of 
transmitting non-contiguous by sending each contiguous 
chunk as a separate message. This can be seen in Figure 7 

(right). 

6.3 Application Benchmarks – NAS BT 
The NAS-BT code is one of the NAS Parallel 
Benchmarks (NPB). It is a simulated computational fluid 
dynamics application that solves systems of equations 
resulting from an approximately factored implicit finite-
difference discretization of three-dimensional Navier-
Stokes equations. The code uses an implicit algorithm to 
compute a finite difference solution to the 3D 
compressible Navier-Stokes equations. The solution is 
based on a Beam-Warming approximate factorization. 
The approximate factorization decouples the three 
dimensions. This leads to three sets of regularly structured 
systems of linear equations. The resulting equations are 
block tridiagonal systems of 5x5 blocks and are solved 
using the Thomas algorithm (Gaussian elimination) 
without pivoting of a banded system. BT code has an 
initialization phase which is followed by iterative 
computations over time steps. In each time step, boundary 
conditions are first calculated. Then the right hand sides 
of the equations are calculated. Next, banded systems are 
solved in three computationally intensive bi-directional 
sweeps along each of the x, y, and z directions. Finally, 
flow variables are updated. For our experiments, we used 
Co-Array Fortran version of NAS BT benchmark 
implemented by Co-Array Fortran team at Rice 
University. Our experiments were run only for Class A 
and Class B of the NAS BT benchmark the problem sizes 
for which are 64 x 64 x 64 and 102 x 102 x 102 
respectively. Both Class A and Class B of the NAS BT 
benchmarks run for 200 iterations. The results of these 
runs are shown in Figure 8. Times shown represent 
overall communication time for the BT benchmark. This 
time is calculated in seconds. Since this work discusses 
different ways to do non-contiguous RMA, to accurately 
represent the advantages and disadvantages of each of 
these methods, only the overall communication times are 
profiled. 

NIC based methods work the following way: 1) The host 
processor sends one message to the NIC representing the 

Figure 6: Microbenchmark - Put Bandwidth as a 
function of the message size 

1

10

100

1000

1 100 10000 1000000 100000000

HBNA

NIC-Based

Vendor Provided

Bytes

M
B

PS

Figure 7: Performance comparisons of NIC based method (left) and HBNA method (Right) 

0

100

200

300

400

500

600

700

800

900

0 500000 1000000 1500000 2000000 2500000

Bytes

HBNA

Calculated value for Copy+Send+Copy

M
B

p
s

0

100

200

300

400

500

600

700

800

900

0 500000 1000000 1500000 2000000 2500000

Bytes

NIC-Based

Vendor Provided

Calculated NIC Based wit no pipelining

M
B

p
s



entire non-contiguous data transfer 2) NIC level code uses 
the DMA engine on the NIC to transmit multiple non-
contiguous chunks of data without any further host 
involvement. Maximum benefit can be obtained when 
first stride is large enough to obtain high bandwidth from 
the network. 

In host based method, the non-contiguous chunks of data 
are copied into larger buffer and then transmitted. This 
may involve more than one communication call 
depending on if the host buffer is big enough to fit the 
entire user data. 

When the overall message size is less than the size of the 
message necessary to obtain saturation bandwidth, 
copying the message into contiguous chunks and sending 
it may be better than the NIC based approaches. It can be 
seen from Figure 8 that for 1 processor per node case, the 
host based method does better then the other two NIC 
based methods. This is because most of the messages in 
BT transmit rectangular data with the longer edge 
representing the number of segments. Such message give 
better bandwidth with the host based method as the data is 
copied into larger contiguous buffers for transmission. 

Thus saturation bandwidth may be reached faster this 
way. Micro-benchmarks in Figure 6 also show the host 
based method giving a better bandwidth for a certain 
message range in which copying and transmitting the non-
contiguous data as a larger chunk gives better bandwidth. 

For the two processors per node case, although 
communication time for the host based method is less, 
some overhead at the application level is perceived:  one 
of the application threads is interrupted to complete data 
transfer on the remote side. This means the over all time 
spent in communication for each processor, when using 
all the processors on the node, is less for the HBNA 
method in comparison to the NIC based method. Overall 
time spent on computation is slightly higher in the HBNA 
method because the user thread is interrupted to complete 
communication (packing/unpacking). 

6.4 Application Benchmarks – SRUMMA 

We use the SRUMMA parallel dense matrix 
multiplication [13] that relies on remote memory access 
communication. The matrices are decomposed into sub-
matrices and distributed among processors with a 2D 

Figure 8: BT performance for class A and Class B. Left- one processor per node, Right - two processors per node 

Class A 1 processor per node

0

2000

4000

6000

8000

10000

12000

4 9 16 25 36 49 64

Vendor Provided
NIC Based
HBNA

Class B 1 processor per node

0

5000

10000

15000

20000

25000

30000

35000

40000

4 9 16 25 36 49 64

Vendor Provided
NIC Based
HBNA

Class A 2 processors per node

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4 9 16 25 36 49 64

Vendor Provided
NIC Based
HBNA

Class B 2 processors per node

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

4 9 16 25 36 49 64

Vendor Provided
NIC Based
HBNA



block distribution. Each sub-matrix is divided into 
chunks. Overlapping is achieved by issuing a call to get a 
chunk of data while computing the previously received 
chunk. Figure 8 shows the performance of SRUMMA for 
matrix of size 2000.  It demonstrates that performance of 
the algorithm is highly sensitive to the implementation of 
the strided interfaces. For smaller number of processors, 
where the block size is larger the NIC-based scheme 
performs the best. However for the larger numbers of 
processors the matrix block size is smaller and thus the 
HBNA scheme that performs packing becomes faster. 

7. Related work 
We are not aware of any prior work on exploiting the NIC 
for implementing efficient non-contiguous RMA data 
transfers. Much work has been done in the recent past 
describing methods of utilizing NIC for point-to-point, 
one-sided and collective communication. Notable of these 
are [1, 2]. Our previous [3] work focused on the 
Infiniband network and discusses a combined technique 
that uses a combination of vendor provided non-
contiguous communication interfaces and host to 
implement one-sided non-contiguous data transfer. Non-
contiguous data transfers have been implemented as a part 
of several libraries and standards. MPI [9]has provision 
for derived, user defined, data types that are able to handle 
non-contiguous data. ARMCI [3, 10] has support for 2 
different kinds of non-contiguous data transfer operations. 
These operations are implemented on several networks, 
even on the networks with limited or no support for non-
contiguous data transfer. [11] Gives a complete overview 
of performance of non-contiguous data types. Methods of 
doing one-sided non-contiguous RMA are discussed in 
[12]. It also discusses non-contiguous communication in 
context of MPI-2 and discusses two optimizations done to 
one-sided non-contiguous MPI-2 communication. The 
optimization done avoids local copy of data by sending 
multiple non-contiguous chunks of data into the remote 
receive buffer directly. The method described here is 
comparable to HBNA method described in this paper 
significant difference being that HBNA is not merely host 

based and it uses NIC level programming to manage 
access to remote receive buffers.  

8. Conclusions 
The paper has introduced two schemes for optimizing 
noncontiguous strided remote memory access (RMA) data 
transfers using a programmable network interface card. 
The two schemes provide superior performance to the 
vendor provided interfaces. Based on experimental results 
obtained in context of microbenchmarks and application 
kernels, it was found that the effectiveness of the two 
schemes is dependent on the message size. This 
observation implies that the most effective algorithm 
would rely on switching between them based on the 
message size. 

9. References 
[1]D. Buntinas, D. K. Panda, J. Duato, and P. Sadayappan, 
"Broadcast/multicast over Myrinet using NIC-assisted 
multidestination messages," Network-Based Parallel Computing, 
Proceedings, vol. 1797, pp. 115-129, 2000 
[2] D. Buntinas, D. K. Panda, and P. Sadayappan, "Performance 
Benefits of NICBased Barrier on Myrinet/GM," presented at 
Communication Architecture for Clusters, San Francisco, CA, 
2001. 
[3] V. Tipparaju, G. Santhmaraman, J. Nieplocha, and D. K. 
Panda, "Host-assised zero-copy remote memory access 
communication on Infiniband," IPDPS' 2004. 
[4] T. Rajeev, G. William, and L. Ewing, A case for using MPI's 
derived datatypes to improve I/O performance. San Jose, CA: 
IEEE Computer Society </pre> </body> </html>, 1998. 
[5] J. Beecroft, D. Addison, F. Petrini, and M. McLaren, 
"QsNetII: An Interconnect for Supercomputing Applications," 
Quadrics, Hot Interconnects, 2003.  
[6] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie, 
"Hardware- and Software-Based Collective Communication on 
the Quadrics Network,"  IEEE International Symposium on 
Network Computing and Applications, Boston, 2001. 
[7] J. Nieplocha, E. Apra, J. Ju, and V. Tipparaju, "One-Sided 
Communication on Clusters with Myrinet," Cluster Computing, 
vol. 6, pp. 115-124, 2003 
[8] R. A. VanDeGeijn and J. Watts, "SUMMA: Scalable 
universal matrix multiplication algorithm," Concurrency-
Practice and Experience, vol. 9, pp. 255-274, 1997 
[9] W. Gropp and E. Lusk, User's Guide for MPICH, a Portable 
Implementation of MPI, 1996. 
[10] J. Nieplocha and B. Carpenter, "ARMCI: A Portable 
Remote Memory Copy Library for Distributed Array Libraries 
and Compiler Run-time Systems,"  IPPS/SDP'99, 1999. 
[11] M. Ashworth, "A report on further progress in the 
development of codes for the CS2," 1996. 
[12] J. Worringen, A. Gaer, and F. Reker, "Exploiting 
transparent remote memory access for non-contiguous- and one-
sided-communication," 2002.  
[13] M. Krishnan and J. Nieplocha, “SRUMMA: A matrix 
multiplication algorithm suitable for clusters and scalable shared 
memory systems”, Proc. 18th International Parallel and 
Distributed Processing Symposium, IPDPS 2004, 2004, p 987-
996 

Figure 8: Matrix Multiplication for matrix size 2000 

0

20

40

60

80

100

120

140

160

180

200

0 16 32 48 64 80
Processors

NIC Based
Vendor provided

HBNA

A
gg

re
ga

te
 G

FL
O

Ps


