Table 14. IBM RS/6000 580 Timings(a) Ethylene, 16 electrons, 1A_1 (D_{2h}), Basis Set=6-311++G** (74 functions, 6-term d's) $^{(b)}$ | Method | Gaussian 90 (J) | Gaussian 92 (C) | Gaussian 92/DFT | |--------------------|----------------------|-------------------|-----------------| | | 2 (24 (27) | 2 (20 (11) | | | Conv. RHF | 2 /21 (27) | 2/20 (41) | | | Direct RHF | 7/84 (90) | 4/66 (69) | | | RHF Gradient | 19/40 (49) | 16/39 (52) | | | RHF Hessian | 217/238 (260) | 221/241 (257) | | | UHF | 5/63 (77) | 2/27 (55) | | | Conv. MP2 | 32/53 (60) | 30/50 (59) | | | Direct MP2 | 32/116 (123) | 31/123 (126) | | | MP2 Gradient | 125/178 (190) | 116/166 (177) | | | MP4(SDTQ) | 690/741 (1108) | 620/640 (963) | | | SDCI | 67/738 (2681) | 55/569 (897) | | | CCSD | NA | 101/1008 (3101) | | | CCSD(T) | | 1572/1592 (3257) | | | QCISD | 89/886 (3357) | 70/702 (1358) | | | QCISD(T) | | 1275/1295 (2641) | | | CASSCF | | 29/576 (596) | | | CAS-CI | NA | NA | | | SVWN (LSD) | NA | NA | | | BLYP (NLSD) | NA | NA | | | | | | | | Method | MOLPRO (92.3) | GAMESS-US 7/17/93 | HONDO (8.3) | | Conv. RHF | 3/24 (41) | 1/17 (40) | | | Direct RHF | NA | 1/1/(10) | | | RHF Gradient | 28/52 (89) | 27/44 (101) | | | RHF Hessian | NA | 27/11 (101) | | | UHF | 2/27 (44) | | | | Conv. MP2 | 1/25 (43) | | | | Direct MP2 | NA | NA | NA | | MP2 Gradient | NA
NA | NA | NA | | MP4(SDTQ) | 23/47 (79) | NA | 1474 | | SDCI | 12/36 (62) | IVA | | | CCSD | 3/47 (80) | NA | NA | | CCSD(T) | 3/47 (80) | NA | NA | | QCISD | 2/40 (45) | NA | NA | | ~ | 2/40 (43) | INA | INA | | QCISD(T)
CASSCF | 2/21 (52) | | | | | 2/31 (53) | | | | SVWN (LSD) | | | | | BLYP (NLSD) | | | | **Table 14.** IBM RS/6000 580 Timings (cont.) | Method | GAMESS-UK | DISCO (1.82) | ACES II | |--------------|-----------|---------------------|---------| | | | | | | Conv. RHF | | 3/33 (36) | | | Direct RHF | | 11/140 (143) | NA | | RHF Gradient | | 105/138 (146) | | | RHF Hessian | | NA | | | UHF | | NA | | | Conv. MP2 | | NA | | | Direct MP2 | | | NA | | MP2 Gradient | | NA | | | MP4(SDTQ) | | NA | | | SDCI | | NA | | | CCSD | | NA | | | CCSD(T) | | NA | | | QCISD | | NA | | | QCISD(T) | | NA | | | CASSCF | | NA | NA | | CAS-CI | | NA | | **Table 14.** IBM RS/6000 580 Timings (cont.) Ethylene, 16 electrons, $^{1}A_{g}$, (D_{2h}) , Basis Set=cc-pVTZ (116 basis functions, 7-term f's, 5-term d's) $^{(b)}$ | Method | Gaussian 90 (J) | Gaussian 92 (C) | MOLPRO (92.3) | |--|---|----------------------|--| | Conv. RHF Direct RHF RHF Gradient RHF Hessian UHF Conv. MP2 Direct MP2 MP2 Gradient MP4(SDTQ) SDCI CCSD QCISD | NA | | 18/178 (190) NA NA NA 14/179 (191) 2/180 (191) NA NA 89/267 (281) 5/212 (228) 8/245 (261) 6/231 (268) | | CASSCF
Method | GAMESS-US 6/17/92 | HONDO (8.3) | 4/192 (210) GAMESS-UK | | Conv. RHF Direct RHF RHF Gradient RHF Hessian UHF Conv. MP2 Direct MP2 MP2 Gradient MP4(SDTQ) SDCI CCSD QCISD CASSCF | NA
NA
NA
NA | NA
NA
NA
NA | | | Method | SUPERMOLECULE | ACES II | | | Conv. RHF Direct RHF RHF Gradient RHF Hessian UHF | 31/369 (441)
60/723 (857)
867/1236 (1425)
NA
NA | NA | | | Conv. MP2 Direct MP2 MP2 Gradient MP4(SDTQ) SDCI CCSD QCISD | NA
NA
NA
NA
NA | NA | | | CASSCF | NA | NA | | **Table 14.** IBM RS/6000 580 Timings (cont.) Isobutene, 32 electrons, 1A_1 (C_{2v}), Basis Set=6-311++ G^{**} (148 functions, 6-term d's) | Method | Gaussian 90 (H) | Gaussian 92 (C) | MOLPRO (92.3) | |----------------------------|---------------------|-----------------|----------------------| | Conv. RHF | | 23/293 (793) | | | Direct RHF
RHF Gradient | | | NA | | RHF Hessian | | | NA | | UHF | | | | | Conv. MP2 | | | | | Direct MP2
MP2 Gradient | | | NA
NA | | MP4(SDTQ) | | | NA | | SDCI | | | | | CCSD | NA | | | | QCISD | | | | | CASSCF | | | | | Method | GAMESS-US 6/17/92 | HONDO (8.1) | GAMESS-UK (2) | | Conv. RHF | | | | | Direct RHF | | | | | RHF Gradient | | | | | RHF Hessian | | | | | UHF | | | | | Conv. MP2
Direct MP2 | NA | NA | NA | | MP2 Gradient | NA
NA | NA
NA | IVA | | MP4(SDTQ) | NA | | NA | | SDCI | | | | | CCSD | NA | NA | NA | | QCISD
CASSCF | NA | NA | | | CASSCF | | | | | Method | DISCO (1.82) | ACES II | | | Conv. RHF | | | | | Direct RHF | | NA | | | RHF Gradient | | | | | RHF Hessian | NA | | | | UHF
Conv. MP2 | NA
NA | | | | Direct MP2 | INA | NA | | | MP2 Gradient | NA | ± 14 ± | | | MP4(SDTQ) | NA | | | | SDCI | NA | | | | CCSD | NA | | | | QCISD | NA
NA | NT A | | | CASSCF | NA | NA | | **Table 14.** IBM RS/6000 580 Timings (cont.) Imidazole, 36 electrons, ¹A', Cs, Basis Set=cc-pVTZ (206 functions, 5-term d's, 7-term f's) | Method | Gaussian 90 (H) | Gaussian 92 (C) | MOLPRO (92.3) | |--|---------------------|---|---------------| | Conv. RHF
Direct RHF
RHF Gradient
RHF Hessian | | 348/4878 (6836)
1347/20211 (20219)
4964/9842 (15011)
36968/41846 (74672) | NA
NA | | UHF Conv. MP2 Direct MP2 MP2 Gradient MP4(SDTQ) | | 20254/40473 (40615) | NA | | SDCI
CCSD
QCISD
CASSCF | NA | | | | Method | GAMESS-US 6/17/92 | HONDO (8.3) | GAMESS-UK (2) | | Conv. RHF Direct RHF RHF Gradient RHF Hessian UHF Conv. MP2 Direct MP2 MP2 Gradient MP4(SDTQ) SDCI CCSD QCISD CASSCF | | | | | Method | DISCO (1.82) | ACES II | | | Conv. RHF
Direct RHF
RHF Gradient
RHF Hessian | NA | NA | | | UHF
Conv. MP2
Direct MP2 | NA
NA | NA | | | MP2 Gradient
MP4(SDTQ)
SDCI | NA
NA
NA | | | | CCSD
QCISD
CASSCF | NA
NA
NA | NA | | | | | | | **Table 14.** IBM RS/6000 580 Timings (cont.) 18-crown-6, $C_{12}H_{24}O_6$, 144 electrons, C_i , Basis Set=aug-cc-pVDZ (606 functions) | Method | Gaussian 92 (E) | Gaussian 92/DFT | MOLPRO (92.3) | |---|----------------------------|-----------------|---------------| | Direct RHF
RHF Gradient
RHF Hessian
Conv. RHF
Conv. MP2
Direct MP2
MP2 Gradient
MP4(SDTQ)
SDCI
CCSD
QCISD
CASSCF | 29181/437716 (438413) | | NA
NA | | Method | GAMESS-US 6/17/92 | HONDO (8.3) | GAMESS-UK (2) | | Direct RHF
RHF Gradient
RHF Hessian
Direct MP2
MP2 Gradient
MP4(SDTQ)
SDCI
CCSD
QCISD
CASSCF | | | | | Method | DISCO (1.82) | ACES II | | | Conv. RHF Direct RHF RHF Gradient RHF Hessian UHF Conv. MP2 Direct MP2 MP2 Gradient MP4(SDTQ) SDCI | NA
NA
NA
NA
NA | NA
NA | | | CCSD
QCISD
CASSCF | NA
NA
NA | NA | | ## **Table 14.** IBM RS/6000 580 Timings (cont.) (a) All times are in seconds. CPU times are the sum of the "user + system" contributions. Wall clock times are given in parentheses. For the iterative methods (RHF, UHF, SD-CI, QCISD and CASSCF) each entry consists of a trio of numbers: "CPU-time-per-teration/total-CPU (total-wall-clock)". The "CPU-time-per-iteration" for the conventional SCF methods was defined as the total run time (integrals + SCF) divided by the number of iterations. These values are intended to facilitate comparison with direct HF methods. For other methods the leftmost entry corresponds to the incremental time for the method. For example, the MP2 entry preceding the slash is the total run time minus the time needed for the HF step. Calculations were performed on a machine with 256 MB of memory and one 2 GB IBM SCSI 2 disk running under AIX 3.2 with Release 2.3.5 of XLF Fortran. Runs were made on an otherwise quiet system. **NA**: not available with this program. FTC-ND: Failed to complete - not enough disk space. FTC-unknown: Failed to complete for unknown reasons. SCF calculations were converged to approximately 15 digits after the decimal point (8 digits in the density). - (b) The ethylene UHF calculation treated the $\pi \oslash \pi^*$ (${}^3B_{1u}$) state. The ethylene ground state is 1A_g . MP2, MP4, CISD and QCISD calculations involved all electrons, i.e., there were no "core" electrons. The CAS configuration list contains 8 CSF's in D_{2h} symmetry and was generated with 4 electrons in 4 orbitals (3_{ag} , $1b_{3u}$, $1b_{2g}$, $2b_{1u}$). This configuration list is sufficient to allow ethylene to dissociate into two singlet methylenes. The time reported includes the time required to compute the integrals and solve the CAS equations using the canonical RHF orbitals as the starting guess. The default INDO initial guess used by Gaussian for ethylene's open shell calculations did not pick up the $\pi \oslash \pi^*$ ${}^3B_{1u}$ state. If the ordering of the initial guess orbitals was corrected using an ALTER command the calculation with Gaussian 90 died with a complaint that symmetry was being broken. Thus, it was necessary to run these calculations with the NOSYMM option, which ignored the available D_{2h} symmetry. Gaussian 92 fixed this problem with the UHF benchmark and was run in full D_{2h} symmetry. - Gaussian 90 requires that RHF calculations which precede certain correlated methods be run in C_1 symmetry. This results in an increase in the ethylene SCF times from 196 seconds (D_{2h}) to 441 seconds (C_1) for the 6-311G** basis; from 1900 seconds (D_{2h}) to 5795 seconds (C_1) for the cc-pVTZ basis; from 1969 seconds (D_{2h}) to 6657 seconds (C_1) for the 6-311++G(3df,3pd) basis. - (c) The Gaussian CAS calculation using RHF canonical orbitals aborted with an error message saying that the initial guess resulted in a rotation of more than 45 degrees in one of the active orbitals.